10.1002/anie.201801462
Angewandte Chemie International Edition
COMMUNICATION
[3]
[4]
a) K. Kodama, Y. Kobayashi, K. Saigo, Chem. Eur. J. 2007, 13, 2144-
2152; b) W. Edwards, D. K. Smith, J. Am. Chem. Soc. 2014, 136, 1116-
1124; c) S. M. So, K. Moozeh, A. J. Lough, J. Chin, Angew. Chem. Int.
Ed. 2014, 53, 829-832; d) L. Zhang, L. Qin, X. Wang, H. Cao, M. Liu,
Adv. Mater. 2014, 26, 6959-6964.
are not favorable for cell adhesion compared with L-enantiomer
surfaces.[7a,7c,7f] Herein, L-phenylalanine chiral property should
also be kept in the right-handed helical nanofibers derived from
L-phenylalanine derivatives. Although cells prefer to interact with
L-enantiomer molecules, the right-handed nanofibers have
opposite influence on cell adhesion. This mutual offsetting leads
to the weak influence on cell adhesion on the right-handed BA
and BP nanofibers (Scheme 2B). In a similar manner, left
handed nanofibers from the D-enantiomer molecule d-BA
displayed a weak influence on cell adhesion (Scheme 2C,
Figure S14-15 and Table S4). Thus, it is considered that the
design of helical nanofibers with homochiral small molecules
(e.g., L-amino acids, D-saccharides) may bring a novel direction
for biomaterial design, which is helpful to touch the fundamental
problems for the studies in the origins of life and the high chiral
preference of life.
In conclusion, the helicity inversion of supramolecular
assemblies based on C2 symmetric L-phenylalanine derivatives
has been successfully achieved through inserting variable
methylene units between the chiral center and rigid aromatic
core. It shows an increase in cell adhesion and proliferation on
left-handed nanofibers and weak influence on cells behaviors on
the right-handed nanofibers, though both types of helical
nanofibers are derived from L-phenylalanine derivatives. The
results provide some initial design rules for constructing helical
supramolecular architechture with homochiral small molecules
through the odd-even effect. Typically, this tunable helical
chirality system also paves a new way to assess the bio-effects
of right- and left-handed helical supramolecular assemblies by
circumventing enantiomeric effect of single molecules.
a) A. J. Boersma, B. L. Feringa, G. Roelfes, Angew. Chem. Int. Ed.
2009, 48, 3346-3348; b) F. Rodriguez-Llansola, B. Escuder, J. F.
Miravet, J. Am. Chem. Soc. 2009, 131, 11478-11484; c) D. Uraguchi, Y.
Ueki, T. Ooi, Science 2009, 326, 120-123; d) M. Hatano, T. Mizuno, A.
Izumiseki, R. Usami, T. Asai, M. Akakura, K. Ishihara, Angew. Chem.
Int. Ed. 2011, 50, 12189-12192; e) A.-B. Xia, D.-Q. Xu, C. Wu, L. Zhao,
Z.-Y. Xu, Chem. Eur. J. 2012, 18, 1055-1059.
[5]
(a) J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, B. L.
Feringa, Science 2004, 304, 278-281; b) M. J. Kim, S. J. Yoo, D. Y. Kim,
Adv. Funct. Mater.2006, 16, 2089-2094; c) P. Duan, Y. Li, L. Li, J. Deng,
M. Liu, J. Phys. Chem. B 2011, 115, 3322-3329; d) C. Gao, S. Silvi, X.
Ma, H. Tian, A. Credi, M. Venturi, Chem. Eur. J. 2012, 18, 16911-
16921; e) C. F. J. Faul, Acc. Chem. Res. 2014, 47, 3428-3438; f) R.
Wang, X. Li, J. Bai, J. Zhang, A. Liu, X. Wan, Macromolecules 2014, 47,
1553-1562.
[6]
[7]
a) G. Liang, Z. Yang, R. Zhang, L. Li, Y. Fan, Y. Kuang, Y. Gao, T.
Wang, W. W. Lu, B. Xu, Langmuir 2009, 25, 8419-8422; b) J. Li, Y.
Kuang, Y. Gao, X. Du, J. Shi, B. Xu, J. Am. Chem. Soc. 2013, 135,
542-545.
a)D. Hanein, B. Geiger, L. Addadi, Science 1994, 263, 1413-1416; b) R.
Bentley, Chem. Soc. Rev. 2005, 34, 609-624; c) T. Sun, D. Han, K.
Rhemann, L. Chi, H. Fuchs, J. Am. Chem. Soc. 2007, 129, 1496-1497;
d) K. Tang, H. Gan, Y. Li, L. Chi, T. Sun, H. Fuchs, J. Am. Chem. Soc.
2008, 130, 11284-11285; e) D. Bandyopadhyay, D. Prashar, Y.-Y. Luk,
Chem. Commun. 2011, 47, 6165-6167; f) X. Yao, Y. Hu, B. Cao, R.
Peng, J. Ding, Biomaterials 2013, 34, 9001-9009.
[8]
a) L. Brunsveld, H. Zhang, M. Glasbeek, J. A. J. M. Vekemans, E. W.
Meijer, J. Am. Chem. Soc. 2000, 122, 6175-6182; b) Y. Huang, J. Hu,
W. Kuang, Z. Wei, C. F. J. Faul, Chem. Commun. 2011, 47, 5554-5556;
c) Y. Li, B. Z. Li, Y. T. Fu, S. W. Lin, Y. G. Yang, Langmuir 2013, 29,
9721-9726; d) S. Manchineella, V. Prathyusha, U. D. Priyakumar, T.
Govindaraju, Chem. Eur. J. 2013, 19, 16615-16624; e) M. A. J.
Gillissen, M. M. E. Koenigs, J. J. H. Spiering, J. A. J. M. Vekemans, A.
R. A. Palmans, I. K. Voets, E. W. Meijer, J. Am. Chem. Soc. 2014, 136,
336-343; f) C. Liu, Q. Jin, K. Lv, L. Zhang, M. Liu, Chem. Commun.
2014, 50, 3702-3705.
Acknowledgements
This work was supported by the Innovation Program of
Shanghai
Municipal
Education
Commission
(201701070002E00061), the NSFC (51573092), and Program
for Professors of Special Appointment (Eastern Scholar) at the
Shanghai Institutions of Higher Learning.The authors thank
Ruibin Wang from the Instrumental Analysis Center of SJTU for
technical assistance during CD and VCD experiments.
[9]
a) H. Komori, Y. Inai, J. Org. Chem. 2007, 72, 4012-4022; b) M. M.
Smulders, I. A. Filot, J. M. Leenders, P. van der Schoot, A. R. Palmans,
A. P. Schenning, E. W. Meijer, J. Am. Chem. Soc. 2010, 132, 611-619;
c) A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, A. Ajayaghosh,
Angew. Chem. 2012, 124, 10657-10661; d) F. Aparicio, B. Nieto-Ortega,
F. Najera, F. J. Ramirez, J. T. L. Navarrete, J. Casado, L. Sanchez,
Angew. Chem. Int. Ed. 2014, 53, 1373-1377; e) J. Kumar, T.
Nakashima, T. Kawai, Langmuir 2014, 30, 6030-6037.
Keywords: Odd-even effect • Chirality inversion • Methylene
unit • Cell adhesion • supramolecular chemistry
[10] a) R. Iwaura, T. Shimizu, Angew. Chem. Int. Ed. 2006, 45, 4601-4604;
b) T. Muraoka, H. Cui, S. I. Stupp, J. Am. Chem. Soc. 2008, 130, 2946-
2947; c) J. Kim, J. Lee, W. Y. Kim, H. Kim, S. Lee, H. C. Lee, Y. S. Lee,
M. Seo, S. Y. Kim, Nat. Commun. 2015, 6, 6959-6966; d) D. P. Zhao, T.
van Leeuwen, J. L. Cheng, B. L. Feringa, Nat. Chem. 2017, 9, 250-256.
[11] a) Y. Yan, K. Deng, Z. Yu, Z. Wei, Angew. Chem. Int. Ed. 2009, 48,
2003-2006; b) E. T. Pashuck, S. I. Stupp, J. Am. Chem. Soc. 2010, 132,
8819-8821; c) S. Cantekin, D. W. R. Balkenende, M. M. J. Smulders, A.
R. A. Palmans, E. W. Meijer, Nat. Chem. 2011, 3, 42-46; d) Y. Fu, B. Li,
Z. Huang, Y. Li, Y. Yang, Langmuir 2013, 29, 6013-6017; e) Y. Nakano,
A. J. Markvoort, S. Cantekin, I. A. W. Filot, H. M. M. ten Eikelder, E. W.
Meijer, A. R. A. Palmans, J. Am. Chem. Soc. 2013, 135, 16497-16506;
f) H. G. Cui, A. G. Cheetham, E. T. Pashuck, S. I. Stupp, J. Am. Chem.
Soc. 2014, 136, 12461-12468.
[1]
a) A. Herbert, A. Rich, Genetica. 1999, 106, 37-47; b) A. Rich, S. Zhang,
Nat. Rev. Genet. 2003, 4, 566-572; c) R. D. Wells, Trends in
Biochemical Sciences 2007, 32, 271-278; d) A. Bacolla, R. D. Wells,
Mol. Carcinog. 2009, 48, 273-285; e) J. Zhao, A. Bacolla, G. Wang, K.
M. Vasquez, Cell. Mol. Life Sci. 2010, 67, 43-62; f) H. Toriumi,
Macromolecules 1984, 17, 1599-1605; g) S. Sasaki, H. Ogawa, S.
Kimura, Polym. J. 1991, 23, 1325-1331; h) Y. Inai, H. Komori, N.
Ousaka, Chem. Rec. 2007, 7, 191-202; i) M. D. Zotti, F. Formaggio, M.
Crisma, C. Peggion, A. Moretto, C. Toniolo, J. Pept. Sci. 2014, 20, 307-
322.
[2]
a) R. K. Das, O. F. Zouani, C. Labrugere, R. Oda, M.-C. Durrieu, Acs
Nano 2013, 7, 3351-3361; b) G. F. Liu, D. Zhang, C. L. Feng, Angew.
Chem. Int. Ed. 2014, 53, 7789-7793; c) K. Lv, L. Zhang, W. Lu, M. Liu,
ACS Appl. Mat. Interfaces 2014, 6, 18878-18884.
[12] a) H. Engelkamp, S. Middelbeek, R. J. M. Nolte, Science 1999, 284,
785-788; b) X. Zhu, P. Duan, L. Zhang, M. Liu, Chem. Eur. J. 2011, 17,
3429-3437; c) X. Wang, P. Duan, M. Liu, Chem. Commun. 2012, 48,
This article is protected by copyright. All rights reserved.