6198
of 3.6 Hz in 9 and 11 con®rmed the presence of an a-l-lyxo furanose ring.19 As already
suggested,17 a rapid epimerization of the furanose ring of the ylide should take place through an
open-chain intermediate. On the other hand, the NMR analysis con®rmed that the con®guration
at the anomeric carbon of the azasugar moiety in both products 9 and 11 was identical to that of
the aldehyde precursors 1 and 2.
A Wittig-based route to aza-C-disaccharides containing a polyhydroxylated pyrrolidine ring
linked to a pyranose or furanose residue by an ethylene bridge has been described. The scope of
this approach should be extensible for the preparation of other compounds featuring a variety of
structural diversities in both carbohydrate moieties. Other formyl aza-C-glycosides as
intermediates in the synthesis of other pyrrolidine homoazasugar are available in our laboratory
via the aminohomologation route of furanoses.20
Acknowledgements
Financial support from MURST COFIN-98 (Italy) is gratefully acknowledged. We thank Mr.
Paolo Formaglio for assistance in the NMR analysis.
References
1. (a) Maryano, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863. (b) Kelly, S. E. In Comprehensive Organic Synthesis;
Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Tokyo, 1991; Vol. 1, p. 729.
2. Dondoni, A; Scherrmann, M.-C. J. Org. Chem. 1994, 59, 6404.
3. Dondoni, A.; Zuurmond, H. M.; Boscarato, A. J. Org. Chem. 1997, 62, 8114.
4. Dondoni, A.; Kleban, M.; Zuurmond, H. M.; Marra, A. Tetrahedron Lett. 1998, 39, 7991.
5. Dondoni, A.; Perrone, D. Tetrahedron Lett. 1999, 40, 9375.
6. (a) Dondoni, A.; Franco, S.; Junquera, F.; Merchan, F. L.; Merino, P.; Tejero, T.; Bertolasi, V. Chem. Eur. J.
1995, 1, 505. (b) Dondoni, A.; Perrone, D. Aldrichimica Acta 1997, 30, 35. (c) Dondoni, A. Synthesis 1998, 1691.
7. It has to be noted that the N-methyl analogue of 1 prepared by Wong and co-workers was also used as crude
material without puri®cation. See: Wong, C.-H.; Provencher, L.; Porco Jr., J. A.; Jung, S.-H.; Wang, Y.-F.; Chen,
L.; Wang, R.; Steensma, D. H. J. Org. Chem. 1995, 60, 1492.
8. (a) Look, G. C.; Fotsch, C. H.; Wong, C.-H. Acc. Chem. Res. 1993, 26, 82. (b) Iminosugars as Glycosidase
Inhibitors, Nojirimycin and Beyond; Stutz, A. E., Ed.; Wiley-VCH: Weinheim, 1998.
9. Legler, G. In Carbohydrate Mimics; Chapleur, Y., Ed.; Wiley-VCH, Weinheim, 1998; p. 463.
10. This issue has been recently addressed. See: Diaz Perez, V. M.; Garcia Moreno, M. I.; Ortiz Mellet, C.; Fuentes, J.;
Diaz Arribas, J. C.; Canada, F. J.; Garcia Fernandez, J. M. J. Org. Chem. 2000, 65, 136.
11. Anzeveno, P. B.; Creemer, L. J.; Daniel, J. K.; King, C.-H. R.; Liu, P. S. J. Org. Chem. 1989, 54, 2539. Baudat, A.;
Vogel, P. J. Org. Chem. 1997, 62, 6252. Johns, B. A.; Pan, Y. T.; Elbein, A. D.; Johnson, C. R. J. Am. Chem. Soc.
1997, 119, 4856. Leeuwenburgh, M. A.; Picasso, S.; Overkleeft, H. S.; van der Marel, G. A.; Vogel, P.; van Boom,
J. H. Eur. J. Org. Chem. 1999, 1185. Zhu, Y.-H.; Vogel P. Chem. Commun. 1999, 1873.
12. The quantitative conversion of the furanose into the N-benzylhydroxylamine±nitrone equilibrium mixture was
carried out by heating the sugar and N-benzylhydroxylamine in the absence of solvent at 110ꢀC for 30 min. No
dehydrating agents were required under these conditions. The one pot thiazole-to-formyl group conversion was
carried out using AgNO3 instead of HgCl2 in the ®nal step. The aldehydes 1 and 2 were puri®ed by ®ltration
through a short column of silica gel with 8:1 cyclohexane:AcOEt. However, while 1 was stable to this treatment,
compound 2 decomposed to a large extent. Compound 1: 1H NMR (CDCl3) 9.27 (d, 1H, J1,2=1.2 Hz, H-1), 7.40±
7.19 (m, 20H, 4 Ph), 4.58 and 4.50 (2 d, 2H, J=11.4 Hz, PhCH2O), 4.56 (s, 2H, PhCH2O), 4.46 and 4.34 (2 d, 2H,
J=11.5 Hz, PhCH2O), 4.26 and 3.70 (2 d, 2H, J=13.1 Hz, PhCH2N), 4.09 (dd, 1H, J2,3=J3,4=1.2 Hz, H-3), 4.07
(dd, 1H, J4,5=4.5 Hz, H-4), 3.90 (dd, 1H, J5,6a=7.7, J6a,6b=9.1 Hz, H-6a), 3.74 (dd, 1H, J5,6b=5.1 Hz, H-6b),
3.56 (ddd, 1H, H-5), 3.34 (dd, 1 H, H-2). Compound 2: 1H NMR (CDCl3) 9.03 (d, 1H, J1,2=3.3 Hz, H-1),