Sulfamide-Based Inhibitors for Carboxypeptidase A
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 24 5301
Dejneka, T.; Loots, M. J .; Perri, N. G.; Petrillo, E. W., J r. ; Powell,
J . R. (Phosphinyloxy)acyl Amino Acid Inhibitors of Angiotensin
Converting Enzyme (ACE). 1. Discovery of (S)-1-[6-Amino-2-
[[hydroxy(4-phenylbutyl)phosphiny]oxy]-1-oxohexyl]-L-proline, a
Novel Orally Active Inhibitor of ACE. J . Med. Chem. 1988, 31,
204-212. (d) Kim, D. H.; Guinosso, C. J .; Buzby, G. C., J r.;
Herbst, D. R.; McCaully, R. J .; Wicks, T. C.; Wendt, R. L.
(Mercaptopropanoyl)indoline-2-carboxylic Acids and Related
Compounds as Potent Angiotensin Converting Enzyme Inhibi-
tors and Antihypertensive Agents. J . Med. Chem. 1983, 26, 394-
403.
using a Rigaku RU300 rotating-anode X-ray generator operat-
ing at 40 kV × 100 mA and a R-axis IIc imaging plate detector
system. Diffraction images were processed with the program
MOSFLM27 and the CCP4 program suite.28
Model refinement was carried out with the programs O29
and CNS.30 The structure of native CPA (pdb code: 5CPA) was
used as the starting model for refinement. A cycle of rigid-
body refinement was followed by cycles of simulated annealing
and individual B factor refinement with model rebuilding. The
extra density accounting for the inhibitor was apparent from
the initial stage of the refinement. During the refinement, the
randomly selected 5% of data were set aside for the Rfree
calculation. Water molecules were gradually added to the
model with the WATERPICK routine in the program CNS.30
The inhibitor model was included in the last stage of the
refinement. The final model includes all residues of CPA
(residues 1-307, 2437 atoms), 16 inhibitor atoms, a zinc atom,
and 148 water molecules.
(5) Wittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J . H. Design
and Therapeutic Application of Matrix Metalloproteinase Inhibi-
tors. Chem. Rev. 1999, 99, 2735-2776.
(6) Rees, D. C.; Lewis, M.; Lipscomb, W. N. Refined Crystal
Structure of Carboxypeptidase A at 1.54 Å Resolution, J . Mol.
Biol. 1983, 168, 367-387.
(7) Phillips, M. A.; Fletterick, R.; Rutter, W. J . Arginine 127
Stabilizes the Transition State in Carboxypeptidase A, J . Biol.
Chem. 1990, 265, 20692-20698.
(8) (a) Wolfenden, R. Analogue Approaches to the Structure of the
Transition State in Enzyme Reactions. Acc. Chem. Res. 1972,
5, 10-18. (b) Lienhard, G. E. Enzymatic Catalysis and Transi-
tion Stat Theory. Science 1973, 180, 149-154. (c) Wolfenden,
R. Transition State Analogue Inhibitors and Enzyme Catalysis.
Annu. Rev. Biophys. Bioeng. 1976, 5, 271-306. (d) Wolfenden,
R. Transition State Affinity and the Design of Enzyme Inhibi-
tors. In Enzyme Mechanisms; Page, M. I.; Williams, A., Eds.;
Royal Chemical Society: London, 1987; pp 97-122.
(9) (a) Komiyama, T.; Suda, H.; Aoygi, T.; Takeuchi, T.; Umezawa,
H. Studies on Inhibitory Effect of Phosphoramidon and Its
Analogues on Thermolysin, Arch. Biochem. Biophys. 1975, 171,
727-731. (b) Homlquist, B.; Vallee, B. H. Metal-coordinating
substrate analogues as inhibitors of metalloenzymes, Proc. Natl.
Acad. Sci. U.S.A. 1979, 76, 6216-6220. (c) Kam, C.-M.; Nishino,
N.; Powers, J . C. Inhibition of Thermolysin and Carboxypepti-
dase A by Phosphoramidates, Biochemistry 1979, 18, 3032-
3038. (d) Hofmann, W.; Rottenberg, M. A Transition State
Analogous Organophosphate Inhibitor of Carboxypeptidase A.
In Enzyme Inhibition; Brodbeck, U., Ed.; Verlag Chemie: Basel,
1980; pp 19-26. (e) J acobsen, N. E.; Bartlett, P. A. A Phospho-
namidate Dipeptide Analogue as an Inhibitor of Carboxypepti-
dase A, J . Am. Chem. Soc. 1981, 103, 654-657. (f) Yamauchi,
K.; Ohtsuki, S.; Kinoshita, M. Phosphonodipeptide Containing
(2-aminoethyl)phosphonic Acid (ciliatine): Transition State
Analogue Inhibitors of Carboxypeptidase A, Biochim. Biophys.
Acta 1985, 827, 275-282. (g) Grobelny, D.; Goli, U. B.; Calardy,
R. E. 3-Phophonopropionic Acids Inhibit Carboxypeptidase A as
Multisubstrate Analogues or Transition State Analogues. Bio-
chem. J . 1985, 232, 15-19. (h) Hill, J . M.; Lowe, G. Synthesis
of Phosphorothioate Esters of L-Phenyl-lactic Acid as Transition-
state Inhibitors of Carboxypeptidase A. J . Chem. Soc., Perkin
Trans. 1 1995, 2001-2007. (i) Hanson, J . E.; Kaplan, A. P.;
Bartlett, P. A. Phosphonate Analogues of Carboxypeptidase A
Substrates are Potent Transition State Inhibitors. Biochemistry
1989, 28, 6294-6305.
(10) (a) Christianson, D. W.; Lipscomb, W. N. Comparison of Car-
boxypeptidase A and Thermolysin: Inhibition by Phosphon-
amidates. J . Am. Chem. Soc. 1988, 110, 5560-5565. (b) Kim,
H.; Lipscomb, W. N. Crystal Structure of the Complex of
Carboxypeptidase A with a Strongly Bound Phosphonate in a
New Crystalline Form: Comparison with Structures of Other
Complexes. Biochemistry 1990, 29, 5546-5555. (c) Kim, H.;
Lipscomb, W. N. Comparison of the Structures of Three Car-
boxypeptidase A-Phosphonate Complexes Determined by X-ray
Crystallography, Biochemistry 1991, 30, 8171-8180.
(11) Mock, M. L.; Tsay, J .-T. Sulfoximine and Sulfodiimine Transi-
tion-State Analogue Inhibitors for Carboxypeptidase A. J . Am.
Chem. Soc. 1989, 111, 4467-4472.
(12) Cathers, B. E.; Schloss, J . V. The Sulfonimidamide as a Novel
Transition State Analogue for Aspartic Acid and Metallopro-
teases. Bioorg. Med. Chem. Lett. 1999, 9, 1527-1532.
(13) Traube, W. Zur Kenntniss des Amids und Imide der Schwefel-
sa¨ure. Ber. 1892, 25, 2472-2475.
(14) (a) Hulte´n, J .; Bonham, N. M.; Nillroth, U.; Hansson, T.;
Zuccarello, G.; Bouzide, A.; Åqvist, J .; Classon B.; Danielson,
H.; Karle´n, A,; Kvarnstro¨m, I.; Samuelsson, B.; Hallberg, A.
Cyclic HIV-1 Proteases Inhibitors Derived from Mannitol: Syn-
thesis, Inhibitory Potencies, and Computational Predictions of
Binding Affinity. J . Med. Chem. 1997, 40, 885-897. (b) Ba¨ckbro,
K.; Lo¨wgren, S.; O¨ sterlund, K.; Atepo, J .; Unge, T.; Hulte´n, J .;
Bonham, N. M.; Schaal, W.; Karle´n, A.; Hallberg, A. Unexpected
Binding Mode of Cyclic Sulfamide HIV-1 Proteases Inhibitor.
J . Med. Chem. 1997, 40, 898-902. (c) Ho¨gberg, M,; Engelhardt,
P.; Vrang, L.; Zhang, H. Bioisosteric Modification of PETT-HIV-1
RT-Inhibitors: Synthesis and Biological Evaluation. Bioorg.
Med. Chem. Lett. 2000, 10, 265-268. (d) Dougherty, J . M.;
Probst, D. A.; Robinson, R. E.; Moore, J . D.; Klein, T. A.;
Ack n ow led gm en t. The authors express their sin-
cere thanks to Korea Research Foundation (KRF-2000-
015-DS50025) and Korea Science and Engineering
Foundation for the financial supports of this work, and
the Ministry of Education and Human Resources for the
BK-21 fellowship to J .D.P.
Refer en ces
(1) Lipscomb, N. W.; Stra¨ter, N. Recent Advances in Zinc Enzymol-
ogy. Chem. Rev. 1996, 96, 2375-2433.
(2) (a) Christianson, D., W.; Lipscomb, W. N. Carboxypeptidase A.
Acc. Chem. Res. 1989, 22, 62-69. (b) Mock, W. L. Zinc Proteases.
In Comprehensive Biological Catalysis. A Mechanistic Reference;
Sinnott, M., Ed. Academic Press: New York, 1998; Vol. 1,
chapter 11.
(3) For example, (a) Powers, J . C.; Harper, J . W. Inhibitors of
Metalloproteases. In Proteinase Inhibitors; Barrett, A. J .; Salve-
san, G., Eds.; Elsevier Science Publishers: Amsterdam, 1986;
pp 219-298. (b) Ner, S. K.; Suckling, C. J .; Bell, A. R.;
Wrigglesworth, R. Inhibition of Carboxypeptidase by Cyclopro-
pane-containing Peptides, J . Chem. Soc., Chem. Commun. 1987,
480-482. (c) Suckling, C. J . The Cyclopropyl Group in Studies
of Enzyme Mechanism and Inhibition, Angew. Chem. Intl. Ed.
1988, 27, 537-552. (d) Mobashery, S.; Ghosh, S. S.; Tamura, S.
Y.; Kaiser, E. T. Design of an effective mechanism-based
inactivator for zinc protease, Proc. Natl. Acad. Sci. U.S.A. 1990,
87, 578-582. (e) Ghosh, S. S.; Wu, Y.-Q.; Mobashery, S. Peptidic
Mechanism-based Inactivators for Carboxypeptidase A, J . Biol.
Chem. 1991, 266, 8759-8764. (e) Tanaka, Y.; Grapass, I.; Dakoji,
S.; Cho, Y. J .; Mobashery, S. J . Am. Chem. Soc. 1994, 116, 7475-
7480. (f) Kim, D. H.; Kim, K. B. Design of a Novel Type of Zinc-
Containing Protease Inhibitor. J . Am. Chem. Soc. 1991, 113,
3200-3202. (g) Lee, K. J .; Kim, D. H. Inactivation of a Prototypic
Zinc-Containing Protease with (S)-2-Benzyl-2-(oxo-2-isoxazolidi-
nyl)acetic Acid. Bioorg. Med. Chem. Lett. 1996, 6, 2431-2436.
(h) Lee, K. J .; J oo, K.-C.; Lee, M.; Kim, D. H. A New Type of
Carboxypeptidase A Inhibitors Designed Using an Imidazole as
a Zinc Coordinating Ligand. Bioorg. Med. Chem. 1997, 5, 1989-
1998. (i) Kim, D. H.; Lee, K. J . O-(Hydroxyacetyl)-L-â-phenylactic
Acid as a New Type of Mechanism-Based Inactivator for Car-
boxypeptidase A. Bioorg. Med. Chem. Lett. 1997, 7, 2607-2612.
(j) Chung, S. J .; Kim, D. H. N-(Hydroxyaminocarbonyl)phenyl-
alanine: A Novel Class of Inhibitor for Carboxypeptidase A.
Bioorg. Med. Chem. 2001, 9, 185-189. (k) Chung, S. J .; Chung,
S.; Lee, H.; Kim, E.-J .; Oh, K. S.; Choi, H. S.; Kim, K. S.; Kim,
Y. J .; Hahn, J . H.; Kim, D. H. Mechanistic Insight into the
Inactivation of Carboxypeptidase A by R-Benzyl-2-oxo-1,3-ox-
azolidine-4-acetic acid, a Novel Type of Irreversible Inhibitor for
Carboxypeptidase A with No Stereospecificity. J . Org. Chem.
2001, 66, 6462-6471. (l) Park, J . D.; Kim, D. H. Cysteine
Derivatives as Inhibitors for Carboxypeptidase A. Synthesis and
Structure-Activity Relationships. J . Med. Chem. 2002, 45, 911-
918.
(4) (a) Ondetti, M. A.; Rubin, B.; Cushman, D. W. Design of Specific
Inhibitors of Angiotensin-Converting Enzyme: New Class of
Orally Active Antihypertensive Agents. Science 1977, 196, 441-
444. (b) Cushman, D. W.; Cheung, H. S.; Sabo, E. F.; Ondetti,
M. A. Design of Potent Competitive Inhibitors of Angiotensin-
Converting Enzyme. Carboxyalkanoyl and Mercaptoalkanoyl
Amino Acids. Biochemistry 1977, 16, 5484-5491. (c) Karanews-
ky, D. S.; Badia, M. C.; Cushman, D. W.; DeForrest, J . M.;