Enantiopure 1-Arylaziridine-2-carboxylic Acid DeriVatiVes
CHART 1. Nitriles Bearing a Three-Membered Ring
are limited to a narrow substrate spectrum. Recently, the lipase-
mediated kinetic resolution of racemic 1-arylaziridine-2-car-
boxylates has been shown to give in most cases disappointingly
low chemical yield and enantioselectivity.8
Biotransformations of nitriles, either through a direct conver-
sion from a nitrile to a carboxylic acid catalyzed by a nitrilase
or through the nitrile hydratase catalyzed hydration of a nitrile
followed by the amide hydrolysis catalyzed by the amidase, have
become the effective and environmentally benign methods for
the production of carboxylic acids and their amide derivatives.9
One of the well-known examples is the industrial production
of acrylamide from biocatalytic hydration of acrylonitrile.10
Recent studies have demonstrated that biotransformations of
nitriles complement the existing asymmetric chemical and
enzymatic methods for the synthesis of chiral carboxylic acids
and their derivatives.11,12 The distinct features of enzymatic
transformations of nitriles are the straightforward generation of
enantiopure amides, valuable organo-nitrogen compounds in
synthetic chemistry, in addition to the formation of enantiopure
carboxylic acids. For example, we have shown that Rhodococcus
erythropolis AJ270,13 a nitrile hydratase/amidase-containing
whole cell catalyst, is able to efficiently and enantioselectively
SCHEME 1. Biotransformations of Racemic
1-Arylaziridine-2-carbonitriles 1
transform a variety of racemic nitriles bearing an R-14 or a
â-stereocenter15 and prochiral dinitriles16 into highly enantiopure
carboxylic acids and amides. More significantly, biotransfor-
mations of nitriles bearing a three-membered ring such as
cyclopropanecarbonitriles I17 and oxiranecarbonitriles II4,18
(Chart 1) proceeded in a highly predictable manner in terms of
reaction efficiency and enantioselectivity based on the substit-
uents and configurations of the substrates. Encouraged by our
previous study, we envisioned that aziridine-2-carbonitriles III
(Chart 1), which have steric features similar to those of
cyclopropanecarbonitriles I and oxiranecarbonitriles II, might
be the suitable substrates to the microbial cell catalyst. Herein,
we report the highly efficient biotransformations of racemic
1-arylaziridine-2-carbonitriles for the synthesis of enantiopure
1-arylaziridine-2-carboxylic acids and their derivatives. The
stereoselective aziridine ring-opening reactions in the synthesis
of chiral R,â-diamino acid derivatives will also be discussed.
(5) (a) Fernandez-Megia, E.; Montaos, M. A.; Sardina, F. J. J. Org. Chem.
2000, 65, 6780. (b) Alonso, D. A.; Andersson, P. G. J. Org. Chem. 1998,
63, 9455. (c) Wang, M.-X.; Deng, G.; Wang, D.-X.; Zheng, Q.-Y. J. Org.
Chem. 2005, 70, 2439. (d) Legters, J.; Thijs, L.; Zwanenburg, B.
Tetrahedron Lett. 1989, 30, 4881.
(6) (a) Davis, F. A.; Liu, H.; Zhou, P.; Fang, T.; Reddy, G. V.; Zhang,
Y. J. Org. Chem. 1999, 64, 7559. (b) Li, B.-F.; Zhang, M.-J.; Hou, X.-L.;
Dai, L.-X. J. Org. Chem. 2002, 67, 2902. (c) McLaren, A. B.; Sweeney, J.
B. Org. Lett. 1999, 1, 1339. (d) Sweeney, J. B.; Cantrill, A. A.; Drew, M.
G. B.; McLaren, A. B.; Thobhani, S. Tetrahedron 2006, 62, 3694. (e) Haga,
T.; Ishikawa, T. Tetrahedron 2005, 61, 2857. (f) Aires-de-Sousa, J.;
Prabhakar, S.; Lobo, A. N.; Rosa, A. M.; Gomes, M. J. S.; Corvo, M. C.;
Williams, D. J.; White, A. J. P. Tetrahedron: Asymmetry 2001, 12, 3349.
(7) (a) Murugan, E.; Siva, A. Synthesis 2005, 2022. (b) Krumper, J. R.;
Gerisch, M.; Suh, J. M.; Bergman, R. G.; Tilley, T. D. J. Org. Chem. 2003,
68, 9705. (c) Antilla, J. C.; Wulff, W. D. J. Am. Chem. Soc. 1999, 121,
5099. (d) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39,
4518. (e) Loncaric, C.; Wulff, W. D. Org. Lett. 2001, 3, 3675. (f) Very
recently, asymmetric aziridination of chalcones with an aminimide promoted
by (+)-Tro¨ger’s base has been reported to give moderate enantiocontrol.
Shen, Y.-M.; Zhao, M.-X.; Xu, J. Shi, Y. Angew. Chem., Int. Ed. 2006, 45,
8005.
Results and Discussion
We first tested the biotransformation of racemic 1-phenyl-
aziridine-2-carbonitrile 1a (Scheme 1). When incubated with
Rhodococcus erythropolis AJ270 microbial cells in phosphate
buffer with pH 7.0 at 30 °C for less than 1 h, nitrile 1a (2 mmol)
underwent efficient hydrolysis to afford excellent yields of S-1-
phenylaziridine-2-carboxamide 2a and methyl R-1-phenylaziri-
(8) Kumar, H. M. S.; Rao, M. S.; Chakravarthy, P. P.; Yadav, J. S.
Tetrahedron: Asymmetry 2004, 15, 127.
(14) (a) Wang, M.-X.; Lu, G.; Ji, G.-J.; Huang, Z.-T.; Meth-Cohn, O.;
Colby, J. Tetrahedron: Asymmetry 2000, 11, 1123. (b) Wang, M.-X.; Li,
J.-J.; Ji, G.-J.; Li, J.-S. J. Mol. Catal. B: Enzym. 2001, 14, 77. (c) Wang,
M.-X.; Zhao, S.-M. Tetrahedron Lett. 2002, 43, 6617. (d) Wang, M.-X.;
Zhao, S.-M. Tetrahedron: Asymmetry 2002, 13, 1695. (e) Wang, M.-X.;
Lin, S.-J. J. Org. Chem. 2002, 67, 6542. (f) Wang, M.-X.; Lin, S.-J.; Liu,
J.; Zheng, Q.-Y. AdV. Synth. Catal. 2004, 346, 439. (g) Wang, M.-X.; Liu,
J.; Wang, D.-X.; Zheng, Q.-Y. Tetrahedron: Asymmetry 2005, 16, 2409.
(h) Liu, J.; Wang, D.-X.; Zheng, Q.-Y.; Wang, M.-X. Chin. J. Chem. 2006,
24, 1665. (i) Ma, D.-Y.; Wang, D.-X.; Zheng, Q.-Y.; Wang, M.-X.
Tetrahedron: Asymmetry 2006, 17, 2366.
(15) (a) Wang, M.-X.; Wu, Y. Org. Biomol. Chem. 2003, 1, 535. (b)
Zhao, S.-M.; Wang, M.-X. Chin. J. Chem. 2002, 20, 1291. (c) Ma, D.-Y.;
Zheng, Q.-Y.; Wang, D.-X.; Wang, M.-X. Org. Lett. 2006, 8, 3231. (d)
Gao, M.; Wang, D.-X.; Zheng, Q.-Y.; Wang, M.-X. J. Org. Chem. 2006,
71, 9532.
(9) (a) Faber, K. Biotransformations in Organic Chemistry, 3rd ed.;
Springer-Verlag: New York, 1997; pp 136-145. (b) Kobayashi, M.;
Shimizu, S. FEMS Microbiol. Lett. 1994, 120, 217 and references therein.
(c) Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin Trans. 1 1997,
1099. (d) Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin Trans. 1
1997, 3197 and references therein.
(10) Nagasawa, T.; Schimizu, H.; Yamada, H. Appl. Microbiol. Bio-
technol. 1993, 40, 189.
(11) For reviews, see: (a) Sugai, T.; Yamazaki, T.; Yokoyama, M.; Ohta,
H. Biosci. Biotechnol. Biochem. 1997, 61, 1419 and references therein. (b)
Martinkova, L.; Kren, V. Biocatal. Biotrans. 2002, 20, 73. (c) Wang, M.-
X. Top. Catal. 2005, 35, 117.
(12) For recent examples, see: (a) DeSantis, G.; Zhu, Z.; Greenberg,
W. A.; Wong, K.; Chaplin, J.; Hanson, S. R.; Farwell, B.; Nicholson, L.
W.; Rand, C. L.; Weiner, D. P.; Robertson, D. E.; Burk, M. J. J. Am. Chem.
Soc. 2002, 124, 9024. (b) Effenberger, F.; Osswald, S. Tetrahedron:
Asymmetry 2001, 12, 279. (c) Hann, E. C.; Sigmund, A. E.; Fager, S. K.;
Cooling, F. B.; Gavagan, J. E.; Ben-Bassat, A.; Chauhan, S.; Payne, M. S.;
Hennessey, S. M.; DiCosimo, R. AdV. Synth. Catal. 2003, 345, 775. (d)
Preiml, M.; Hillmayer, K.; Klempier, N. Tetrahedron Lett. 2003, 44, 5057.
(e) Yokoyama, M.; Kashiwagi, M.; Iwasaki, M.; Fushuku, K.; Ohta, H.;
Sugai, T. Tetrahedron: Asymmetry 2004, 15, 2817.
(13) (a) Blakey, A. J.; Colby, J.; Williams, E.; O’Reilly, C. FEMS
Microbiol. Lett. 1995, 129, 57. (b) Colby, J.; Snell, D.; Black, G. W.
Monatsh. Chem. 2000, 131, 655. (c) O’Mahony, R.; Doran, J.; Coffey, L.;
Cahill, O. J.; Black, G. W.; O’Reilly, C. Antonie Van Leeuwenhoek 2005,
87, 221.
(16) (a) Wang, M.-X.; Liu, C.-S.; Li, J.-S.; Meth-Cohn, O. Tetrahedron
Lett. 2000, 41, 8549. (b) Wang, M.-X.; Liu, C.-S.; Li, J.-S. Tetrahedron:
Asymmetry 2001, 12, 3367.
(17) (a) Wang, M.-X.; Feng, G.-Q. Tetrahedron Lett. 2000, 41, 6501.
(b) Wang, M.-X.; Feng, G.-Q. New J. Chem. 2002, 1575. (c) Wang, M.-
X.; Feng, G.-Q. J. Org. Chem. 2003, 68, 621-624. (d) Wang, M.-X.; Feng,
G. Q. J. Mol. Catal. B: Enzym. 2002, 18, 267. (e) Wang, M.-X.; Feng,
G.-Q.; Zheng, Q.-Y. AdV. Synth. Catal. 2003, 345, 695. (f) Wang, M.-X.;
Feng, G.-Q.; Zheng, Q.-Y. Tetrahedron: Asymmetry 2004, 15, 347.
(18) (a) Wang, M.-X.; Lin, S.-J.; Liu, C.-S.; Zheng, Q.-Y.; Li, J.-S. J.
Org. Chem. 2003, 68, 4570. (b) Wang, M.-X.; Deng, G.; Wang, D.-X.;
Zheng, Q.-Y. J. Org. Chem. 2005, 70, 2439.
J. Org. Chem, Vol. 72, No. 6, 2007 2041