Y. M. Fobian et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2823–2825
2825
straightforward chemistry could be used to arrive at amides
including 16a.
(BA 1.5%), presumably due to in vivo amide hydrolysis, and that
was typical of the series. To address this issue, non-hydrolyzable
bioisosteric replacements for the amide linkage were sought, as re-
ported in the following Letter.
Isomeric amides such as 12a (Scheme 2) could be obtained
using, for example, tert-butyl N-(3-hydroxypropyl)carbamate,
which could be carried on to amine 9. Amine 9 was converted to
amide analogs 10, and on to final hydroxamic acids 12a.
We synthesized over 500 extended chain amides and ketones in
our MMP-13 program and the findings for selected analogs are
summarized in Table 1. Isonipecotate 2 demonstrates excellent
selectivity for MMP-13 versus the other MMP isoforms tested.
The direct open-chain analogs of 2, ketones 13, 14, and 3a, which
differ only in connecting chain length, are each more potent to-
ward MMP-13 than isonipecotate 2. Compounds 14 and 3a achieve
encouraging selectivity ratios for MMP-13 versus MMP-8, -9, -1,
and -14, but exhibit poor selectivity with respect to MMP-2.
We explored a variety of different linkers. Ether-linked com-
pounds including 17 lacked MMP-13/-2 selectivity. Amide analogs
made according to Scheme 1, such as 15a and 16, showed disap-
pointing selectivity, with 16 being essentially equipotent for
MMP-2, -8, and -13. N-Methylation, to alter the steric environ-
ment, did not improve the ratios, as can be seen from 15c and
15d. However, the isomeric benzamides (Scheme 2) look signifi-
cantly more attractive.
For example, compound 12b is potent for MMP-13, but unlike
its direct amide isomer, 15a, spares MMP-2 and -8. Conjugation
of the amide pi system into the aryl ring may diminish the confor-
mational mobility of these amides versus the amides of Scheme 1
(e.g., 12c vs 15c; 12a vs 15a) and this might account for the im-
proved selectivity of the latter series. Further exploration in the
series has shown the electronics of ring substitution did not have
a pronounced effect on potency/selectivity, although more hin-
dered analogs, such as 12d, saw a drop off in activity. Additionally,
saturated amides, including 12e and 12f exhibit reduced potency
and/or selectivity.
References and notes
1. Inhibition of Matrix Metalloproteinases: Therapeutic Applications; Greenwald, R. A.,
Zucker, S., Golub, L. M., Eds.; New York Academy of Sciences: New York, 1999.
2. (a) Becker, D. P.; Villamil, C. I.; Barta, T. E.; Bedell, L. J.; Boehm, T. L.; Decrescenzo,
G. A.; Freskos, J. N.; Getman, D. P.; Hockerman, S. L.; Heintz, R.; Howard, S. C.; Li,
M. H.; McDonald, J. J.; Carron, C. P.; Funckes-Shippy, C. L.; Mehta, P. P.; Munie, G.
E.; Swearingen, C. A. J. Med. Chem. 2005, 48, 6713; (b) Becker, D. P.; Barta, T. E.;
Bedell, L. J.; Boehm, T. L.; Bond, B. R.; Carroll, J.; Carron, C. P.; DeCrescenzo, G. A.;
Easton, A. M.; Freskos, J. N.; Funckes-Shippy, C. L.; Heron, M.; Hockerman, S. L.;
Howard, C. P.; Kiefer, J. R.; Li, M. H.; Mathis, K. J.; McDonald, J. J.; Mehta, P. P.;
Munie, G. E.; Sunyer, T.; Swearingen, C. A.; Villamil, C. I.; Welsch, D.; Williams, J.
M.; Yu, Y.; Yao, J. J. Med Chem. 2010, 53, 6653.
3. (a) Holmbeck, K.; Bianco, P.; Caterina, J.; Yamada, S.; Kromer, M.; Kuznetsov, S.
A.; Mankani, M.; Robey, P. G.; Poole, A. R.; Pidoux, I.; Ward, J. M.; Birkedal-
Hansen, H. Cell 1999, 99, 81; (b) Zhou, Z.; Apte, S. S.; Soininen, R.; Cao, R.;
Baaklini, G. Y.; Rauser, R. W.; Wang, J.; Cao, Y.; Tryggvason, K. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 4052.
4. Wasserman, Z. R. Chem. Biol. 2005, 12, 143.
5. (a) Johnson, A. R.; Pavlovsky, A. G.; Ortwine, D. F.; Prior, F.; Man, C. F.;
Bornemeier, D. A.; Banotai, C. A.; Mueller, W. T.; McConnell, P.; Yan, C.; Baragi,
V.; Lesch, C.; Roark, W. H.; Wilson, M.; Datta, K.; Guzman, R.; Han, H. K.; Dyer, R.
D. J. Biol Chem. 2007, 282, 27781; (b) LaFleur, M. A.; Drew, A. F.; de Sousa, E. L.;
Blick, T.; Bills, M.; Walker, E. C.; Williams, E. D.; Walthan, M.; Thompson, E. W.
Int. J. Cancer 2005, 114, 544.
6. Kolodziej, S. A.; Hockerman, S. L.; DeCrescenzo, G. A.; McDonald, J. J.; Mischke, D.
A.; Munie, G. E.; Fletcher, T. R.; Stehle, N.; Swearingen, C.; Becker, D. P. Bioorg.
Med. Chem. Lett. 2010, 20, 3561; See also: Kolodziej, S. A.; Hockerman, S. L.;
Boehm, T. L.; DeCrescenzo, G. A.; McDonald, J. J.; Mischke, D. A.; Munie, G. E.;
Fletcher, T. R.; Stehle, N.; Swearingen, C.; Becker, D. P. Bioorg. Med. Chem. Lett.
2010, 20, 3557.
7. For other groups interested in MMP-13 selective inhibitors: (a) Wu, J.; Rush, T.
S., III; Hotchandani, R.; Du, X.; Geck, M.; Collins, E.; Xu, Z. B.; Skotnicki, J.; Levin, J.
I.; Lovering, F. E. Bioorg. Med. Chem. Lett. 2005, 15, 4105; (b) Nuti, E.; Casalini, F.;
Avramova, S. I.; Santamaria, S.; Cercignani, G.; Marinelli, L.; La Pietra, V.;
Novellino, E.; Orlandini, E.; Nencetti, S.; Tuccinardi, T.; Martinelli, A.; Lim, N.;
Visse, R.; Nagase, H.; Rossello, A. J. Med. Chem. 2009, 52, 4757.
8. Freskos, J. N.; Fobian, Y. M.; Barta; T. E.; Becker, D. P.; Bedell, L. J.; Boehm, T. L.;
Carroll, J. N.; DeCrescenzo, G. A.; Hockerman, S. L.; Kassab; D. J.; Kolodziej, S. A.;
McDonald, J. J.; Mischke, D.A.; Norton, Monica B.; Rico, J. G.; Talley; J. J.; Villamil,
C. I.; Wang, Lijuan J. U.S. Patent 6,890,928, 2005; Chem. Abstr. 1999, 131, 44740.
9. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
Benzamides like 12a and 12c became the focus of further study,
and, while we achieved meaningful levels of MMP-13 selectivity,
we did not find amides that had both high potency and acceptable
PK properties. Compound 12a had a half-life in rats of only 0.58 h