C O M M U N I C A T I O N S
Scheme 3 a
strategy, other members of the family of aspidosperma alkaloids
could be synthesized by starting with appropriately substituted
anilines and alkynyl sulfoxides and by derivatization of advanced
intermediates (e.g., from compound 1416). In addition, with both
enantiomers of Evans’ chiral N-sulfinyloxazolidinone easily ac-
cessible, either enantiomer of aspidosperma alkaloids can be
constructed. We are currently applying this new strategy in the total
syntheses of aspidophytine4f and related structures; the results will
be reported in due course.
Acknowledgment. The work was originally supported by NIH
(CA22237). We thank Dr. Jeff Kampf for the X-ray crystallography
on compound 8.
a (a) Two equivalents of t-BuLi, 1 equivalent of CuBr‚Me2S, then 4,
THF, -78 °C, 82%; (b) MeLi, Boc2O, THF, -78 °C, 81%; (c) Zn(Cu),
Cl3CCOCl, THF, -45 °C, 78%; (d) n-Bu3SnH, cat. Et3B, benzene, reflux,
92%; (e) acetone, cat. p-TsOH, room temperature, 96%.
Supporting Information Available: Experimental procedures and
1
spectroscopic data (IR, H NMR, 13C NMR, HRMS) (PDF). Crystal
data for compound 8 (CIF). This material is available free of charge
Scheme 4 a
References
(1) Saxton, J. E. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New
York, 1998; Vol. 51, Chapter 1.
(2) For pioneering syntheses: (a) Stork, G.; Dolfini, J. E. J. Am. Chem. Soc.
1963, 85, 2872-2873. (b) Harley-Mason, J.; Kaplan, M. J. Chem. Soc.,
Chem. Commun. 1967, 915-916. (c) Bu¨chi, G.; Matsumoto, K. E. J. Am.
Chem. Soc. 1971, 93, 3299-3301. (d) Le Me´nez, P.; Kunesch, N.; Liu,
S.; Wenkert, E. J. Org. Chem. 1991, 56, 2915-2918. (e) Gallagher, T.;
Magnus, P.; Huffman, J. J. Am. Chem. Soc. 1982, 104, 1140-1141. (f)
Overman, L. E.; Sworin, M.; Burk, R. M. J. Org. Chem. 1983, 48, 2685-
2690.
(3) For most recent racemic syntheses: (a) Patro, B.; Murphy, J. A. Org.
Lett. 2000, 2, 3599-3601. (b) Toczko M. A.; Heathcock, C. H. J. Org.
Chem. 2000, 65, 2642. (c) Callaghan, O.; Lampard, C.; Kennedy, A. R.;
Murphy, J. A. J. Chem. Soc., Perkin Trans. 1 1999, 995-1001. (d) Urrutia,
A.; Rodriguez, J. G. Tetrahedron 1999, 55, 11095. (e) Quinn, J. F.; Bos,
M. E.; Wulff, W. D. Org. Lett. 1999, 1, 161-164. (f) Kozmin, S. A.;
Rawal, V. H. J. Am. Chem. Soc. 1998, 120, 13523-13524.
(4) Asymmetric syntheses: (a) Kozmin, S. A.; Iwama, T.; Huang, Y.; Rawal,
V. H. J. Am. Chem. Soc. 2002, 124, 4628-4641. (b) Iyengar, R.;
Schildknegt, K.; Aube´, J. Org. Lett. 2000, 2, 1625. (c) Schultz, A. G.;
Pettus, L. J. Org. Chem. 1997, 62, 6855-6861. (d) Desmae¨le, D.;
d’Angelo, J. J. Org. Chem. 1994, 59, 2292-2303. (e) Node, M.;
Nagasawa, H.; Fuji, K. J. Org. Chem. 1990, 55, 517-521. (f) He, F.;
Altom, J. D.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 6771-6772.
(5) (a) Marino, J. P.; Neisser, M. J. Am. Chem. Soc. 1981, 103, 7687-7689.
(b) Marino, J. P.; Perez, A. D. J. Am. Chem. Soc. 1984, 106, 7643-7644.
(c) Marino, J. P.; Laborde, E.; Paley, R. S. J. Am. Chem. Soc. 1988, 110,
966-968.
a (a) Pyrrolidine, benzene, room temperature, 86%; (b) pyrrolidine,
2-propanol, 33% aqueous AcOH; (c) i-BuOCOCl, Et3N, 3-chloropropy-
lamine hydrochloride, THF, 0 °C, 64% (two steps); (d) NaH, DMF, 0 °C,
86%; (e) KHMDS, TMSCl, THF, -78 °C, then Pd(OAc)2/O2, DMSO, 60
°C, 80%; (f) 3 M HCl/2-propanol, reflux, 0.5 h, 90%; (g) H2NNH2‚H2O/
Na/HOCH2CH2OH, 160 °C, 1 h, then 210 °C, 3 h, 75%; (h) LiAlH4, THF
reflux, 3 h, 90%.
(6) (a) Marino, J. P.; Bogdan, S.; Kimura, K. J. Am. Chem. Soc. 1992, 114,
5566-5572. (b) Burke, S. D.; Shankaran, K.; Helber, M. J. Tetrahedron
Lett. 1991, 32, 4655-4658. (c) Kosugi, H.; Miura, Y.; Kanna, H.; Uda,
H. Tetrahedron: Asymmetry 1993, 4, 1409-1412.
(7) Schulte, K. E.; Reisch, J.; Bergenthal, D. Chem. Ber. 1968, 101, 1540-
HPLC analysis, amide 10 was determined to be a single enantiomer
by comparison with the result of its racemic form, indicating that
the above ketene lactonization reaction was a highly enantiospecific
process.14 Treatment of amide 10 with NaH initiated a tandem
conjugate addition/intramolecular alkylation reaction sequence and
furnished the tricyclic core structure 11 (86%). Compound 11 was
oxidized to enone 12 (80%) through a modified Saegusa reaction.15
A sequential deprotection-conjugate addition process under acidic
condition completed the indoline ring giving 5,17-dioxo-aspidosper-
midine 13 (90%). Ketone 13 was then reduced by a Wolff-Kishner
reduction16 yielding 5-oxo-aspidospermidine 14 (75%). Finally, (+)-
aspidospermidine 1 was obtained by the reduction of 14 with
LiAlH4 (90%) (Scheme 4). The spectroscopic data and optical
rotation of 1 were fully consistent with reported values.17
1552.
(8) Evans, D. A.; Faul, M. M.; Colombo, L.; Bisaha, J. J.; Clardy, J.; Chery,
D. J. Am. Chem. Soc. 1992, 114, 5977-5985.
(9) Kosugi, H.; Kitaoka, M.; Takahashi, A.; Uda, H. J. Org. Chem. 1987,
52, 1078-1082.
(10) Racemic forms of compound 4 and 10 were synthesized for the comparison
(see the Supporting Information).
(11) Muchowski, J. M.; Venuti, M. C. J. Org. Chem. 1980, 45, 4758-4801.
(12) Rawson, R. J.; Harrison, I. T. J. Org. Chem. 1970, 35, 2057-2058.
(13) See the Supporting Information.
(14) Attempts to directly establish the enantiomeric purity of compounds 7
through 9 failed. Because any obvious enantio-enriching process (e.g.,
recrystallization) was carefully avoided during the transformations from
compound 7 to 10, the optical purity of compound 7 should be as
represented by that of compound 10.
(15) (a) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011-1013.
(b) Larock, R. C.; Hightower, T. R. Tetrahedron Lett. 1995, 36, 2423-
2426.
(16) Wenkert, E.; Orito, K.; Simmons, D. P.; Kunesche, N.; Ardisson, J.;
Poisson, J. Tetrahedron 1983, 39, 3719-3724.
(17) Camerman, A.; Camerman, N.; Kutney, J. Tetrahedron Lett. 1965, 6,
637-642.
In summary, we have developed a new, efficient strategy for
the enantiospecific synthesis of aspidosperma alkaloids exemplified
by the synthesis of (+)-aspidospermidine 1. By employing this new
JA026357F
9
J. AM. CHEM. SOC. VOL. 124, NO. 45, 2002 13399