C O M M U N I C A T I O N S
the desired polyol. This method provides a general approach to
acyclic polyols because substitution can be independently installed
in a modular manner at each step in the synthetic pathway with
high selectivity.
Acknowledgment. This research was supported by the National
Institutes of Health (General Medical Sciences, GM54909). K.A.W.
thanks the Camille and Henry Dreyfus Foundation, Merck Research
Laboratories, Johnson and Johnson, and the Sloan Foundation for
awards to support research. J.M.T. thanks Pfizer, Inc., for providing
a Graduate Research Fellowship. We would like to thank Dr. L.
Pfeifer for valuable discussions. We also thank Dr. J. Greaves and
Dr. J. Mudd for mass spectrometric data and Dr. J. Ziller for X-ray
analyses.
overnight, the reaction mixture was treated with n-Bu4NF (eq 2),
leading directly to the oxasilacyclopentane acetal 6f.
Supporting Information Available: Full experimental and char-
acterization data (PDF). This material is available free of charge via
Lewis acid-mediated nucleophilic substitution followed by oxida-
tion of the carbon-silicon bond1,2 revealed the 1,3-diol moiety
(Scheme 3). Allyltrimethylsilane was employed as the representative
nucleophile.30 In accordance with our studies of five-membered ring
oxocarbenium ions,30,31 nucleophilic substitution provided the 1,3-
trans products with high stereoselectivity (Scheme 3). Oxidation
of the resulting oxasilacyclopentanes with alkyl hydroperoxides32
provided 1,3-diols, including polyol 8a containing the desired
anti,anti stereotriad (Scheme 3).
References
(1) Tamao, K.; Akita, M.; Kumada, M. J. Organomet. Chem. 1983, 254, 13-
22.
(2) Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599-7662.
(3) Liu, D.; Kozmin, S. A. Angew. Chem., Int. Ed. 2001, 40, 4757-4759.
(4) Bols, M.; Skrydstrup, T. Chem. ReV. 1995, 95, 1253-1277.
(5) Murakami, M.; Suginome, M.; Fujimoto, K.; Nakamura, H.; Andersson,
P. G.; Ito, Y. J. Am. Chem. Soc. 1993, 115, 6487-6498.
(6) Young, D. G. J.; Hale, M. R.; Hoveyda, A. H. Tetrahedron Lett. 1996,
37, 827-830.
Scheme 3a
(7) Hale, M. R.; Hoveyda, A. H. J. Org. Chem. 1994, 59, 4370-4374.
(8) Zacuto, M. J.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 8587-8588.
(9) Tamao, K.; Nakajima, T.; Sumiya, R.; Arai, H.; Higuchi, N.; Ito, Y. J.
Am. Chem. Soc. 1986, 108, 6090-6093.
(10) Kablean, S. N.; Marsden, S. P.; Craig, A. M. Tetrahedron Lett. 1998, 39,
5109-5112.
(11) Tanino, K.; Yoshitani, N.; Moriyama, F.; Kuwajima, I. J. Org. Chem.
1997, 62, 4206-4207.
(12) Bear, T. J.; Shaw, J. T.; Woerpel, K. A. J. Org. Chem. 2002, 67, 2056-
2064 and references therein.
(13) Davis, A. P.; Hegarty, S. C. J. Am. Chem. Soc. 1992, 114, 2745-2746.
(14) The yields were significantly reduced when silyllithium 4 was generated
in situ.
(15) Roddick, D. M.; Heyn, R. H.; Tilley, T. D. Organometallics 1989, 8,
324-330.
(16) Lipshutz, B. H.; Sclafani, J. A.; Takanami, T. J. Am. Chem. Soc. 1998,
120, 4021-4022.
(17) Depending on the substrate, stereochemistries were proven by either X-ray
crystallography, spectroscopy, or chemical correlation.
(18) Krief, A.; Provins, L.; Dumont, W. Angew. Chem., Int. Ed. 1999, 38,
1946-1948.
(19) Yamamoto, Y.; Chounan, Y.; Nishii, S.; Ibuka, T.; Kitahara, H. J. Am.
Chem. Soc. 1992, 114, 7652-7660.
(20) The dimethyl acetonide protected enoate derived from D-mannitol
underwent conjugate addition in a similar fashion.
(21) Similar results were observed when the hydroxyl group was protected as
the pivaloate ester.
(22) Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem.
Soc. 2002, 124, 392-393.
(23) The optical activity of enoates 1c and 1e was preserved.
(24) McGarvey, G. J.; Williams, J. M. J. Am. Chem. Soc. 1985, 107, 1435-
1437.
a Key: (i) CH2CHCH2Si(CH3)3, BF3‚OEt2, -78 °C to 0 °C. (ii) 10 equiv
of CsOH‚H2O, 5.5 equiv of CsF, 8 equiv of t-BuOOH, NMP. (a)
Diastereoselectivity determined by GCMS or 1H NMR spectroscopy. (b) 8
equiv of cumene hydroperoxide was used.
(25) Panek, J. S.; Beresis, R.; Xu, F.; Yang, M. J. Org. Chem. 1991, 56, 7341-
7344.
(26) Crump, R. A. N. C.; Fleming, I.; Hill, J. H. M.; Parker, D.; Reddy, N. L.;
Waterson, D. J. Chem. Soc., Perkin Trans. 1 1992, 3277-3294.
(27) Hoffmann, R. W.; Dahmann, G.; Andersen, M. W. Synthesis 1994, 629-
638.
In conclusion, we have developed a route for the stereoselective
synthesis of 1-oxa-2,2-(dimesityl)silacyclopentane acetals, inter-
mediates for the formation of highly functionalized 1,3-diols. This
route involves a diastereoselective conjugate addition reaction of a
silyllithium reagent, subsequent diastereoselective enolate alkylation,
and a fluoride-catalyzed hydrosilylation reaction to afford the
oxasilacyclopentane acetal. A highly selective nucleophilic substitu-
tion reaction, followed by oxidation of the C-Si bond, leads to
(28) Marshall, J. A.; Perkins, J. F.; Wolf, M. A. J. Org. Chem. 1995, 60, 5556-
5559.
(29) Roush, W. R.; Chemler, S. R. J. Org. Chem. 1998, 63, 3800-3801.
(30) Shaw, J. T.; Woerpel, K. A. J. Org. Chem. 1997, 62, 6706-6707.
(31) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Woerpel, K. A. J. Am. Chem.
Soc. 1999, 121, 12209-12210.
(32) Smitrovich, J. H.; Woerpel, K. A. J. Org. Chem. 1996, 61, 6044-6046.
JA027335W
9
J. AM. CHEM. SOC. VOL. 124, NO. 43, 2002 12649