4
Tetrahedron Letters
10.
11.
12.
13.
14.
15.
16.
17.
W.H. Binder; R. Sachsenhofer, Macromol. Rapid Commun. 2007,
28, 15–54.
W. Binder; R. Sachsenhofer, Macromol. Rapid Commun. 2008, 29,
952–981.
T.R. Chan; R. Hilgraf; K.B. Sharpless; V. V Fokin, Org. Lett. 2004,
6, 2853–5.
W.G. Lewis; F.G. Magallon; V. V Fokin; M.G. Finn, J. Am. Chem.
Soc. 2004, 126, 9152–3.
V.O. Rodionov; S.I. Presolski; S. Gardinier; Y.-H. Lim; M.G. Finn,
J. Am. Chem. Soc. 2007, 129, 12696–704.
S.I. Presolski; V. Hong; S.-H. Cho; M.G. Finn, J. Am. Chem. Soc.
2010, 132, 14570–6.
S. Ozçubukçu; E. Ozkal; C. Jimeno; M.A. Pericàs, Org. Lett. 2009,
11, 4680–3.
E. Ozkal; S. Özçubukçu; C. Jimeno; M.A. Pericàs, Catal. Sci.
Technol. 2012, 2, 195.
Figure 2. Cycloaddition reaction yields for the reaction of selected
substrate sets (entries 1, 2, 5 and 6) when performed in various water:ethanol
mixtures
18.
19.
H. Hiroki; K. Ogata; S. Fukuzawa, Synlett 2013, 24, 843–846.
V. Hong; S.I. Presolski; C. Ma; M.G. Finn, Angew. Chem. Int. Ed.
Engl. 2009, 48, 9879–83.
Such behavior may be explained by the solubility of the
copper-ligand-substrates complex. In the cases of entries 5 and 6,
the alkynes are more soluble in water, which was opposite to
cyclohexyl azide, which forms a poorly water soluble complex
with AMTC and copper. Therefore, the copper-azide-AMTC
species would remain inaccessible to the water-soluble alkynes,
resulting in poor yield. In the cases of entries 2 and 3, the copper-
azide-AMTC species is slightly more water-soluble, whereas the
alkyne is non-polar and insoluble in water. Thus, the copper-
ligand-substrate complex can form easily at the interface between
water and the undissolved substrate, promoting the reaction.
20.
21.
Log P values were calculated using Marvin 6.3.1, ChemAxon Ltd.,
2014.
P. W. Szafranski; K. Dyduch; T. Kosciolek; T. P. Wrobel; M.
Gomez-Canas; M. Gomez-Ruiz; J. Fernandez-Ruiz; J. Mlynarski,
Lett. Drug Des. Discov. 2013, 10, 169–172.
G. Brackman; M. Risseeuw; S. Celen; P. Cos; L. Maes; H.J. Nelis;
S. Van Calenbergh; T. Coenye, Bioorg. Med. Chem. 2012, 20,
4737–43.
S. Narayan; J. Muldoon; M.G. Finn; V. V Fokin; H.C. Kolb; K.B.
Sharpless, Angew. Chem. Int. Ed. Engl. 2005, 44, 3275–9.
A. Chanda; V. V Fokin, Chem. Rev. 2009, 109, 725–48.
N. V. Dubrovina; L. Domke; I.A. Shuklov; A. Spannenberg; R.
Franke; A. Villinger; A. Börner, Tetrahedron 2013, 69, 8809–8817.
22.
23.
24.
25.
However, if the copper-ligand-substrates complex is trapped
within the undissolved organic substance layer, the reaction may
be inhibited. Such situation can easily occur in aqueous
suspension and explain the lower product purity.
Supplementary material
Electronic Supporting Information (ESI) for this article,
containing detailed procedures and spectral/analytical data for
novel compounds (AMTC and Entry 6) is available.
3. Conclusions
The studies presented herein show the efficiency of AMTC as
a CuAAC ligand, particularly for aliphatic substrate sets. The use
of AMTC is particularly beneficial for the reaction between
a polar azide and a nonpolar alkyne. For the selected substrate
sets, the optimum procedures require significantly less copper
and proceed under milder conditions than the originally
published ligand-free syntheses (typically, 10 mol% Cu). 21,22,25
Acknowledgments
The authors thank Professor L. Strekowski, Department of
Chemistry, Georgia State University, Atlanta, Georgia 30302,
USA, for critical reading of the manuscript.
References and notes
1.
2.
3.
H.C. Kolb; M.G. Finn; K.B. Sharpless, Angew. Chem. Int. Ed. Engl.
2001, 40, 2004–2021.
V. V. Rostovtsev; L.G. Green; V. V. Fokin; K.B. Sharpless, Angew.
Chemie 2002, 114, 2708–2711.
C. Tornøe; M. Meldal, Peptides: The Wave of the Future.
Proceedings of the Second International and the Seventeenth
American Peptide Symposium, June 9–14 2001, San Diego,
California, U.S.A., 2001, pp. 263-264.
4.
5.
C.W. Tornøe; C. Christensen; M. Meldal, J. Org. Chem. 2002, 67,
3057–3064.
V.D. Bock; H. Hiemstra; J.H. van Maarseveen, European J. Org.
Chem. 2006, 51–68.
6.
7.
8.
L. Liang; D. Astruc, Coord. Chem. Rev. 2011, 255, 2933–2945.
J.E. Moses; A.D. Moorhouse, Chem. Soc. Rev. 2007, 36, 1249–62.
P. Thirumurugan; D. Matosiuk; K. Jozwiak, Chem. Rev. 2013, 113,
4905–79.
9.
G.C. Tron; T. Pirali; R.A. Billington; P.L. Canonico; G. Sorba;
A.A. Genazzani, Med. Res. Rev. 2008, 28, 278–308.