6600
J. N. Kim et al. / Tetrahedron Letters 43 (2002) 6597–6600
5d
(45%)
O
O
O
OAc O
a
a
2a
b
O
b
O
1d
O
5d'
(23%)
O
Scheme 4.
References
129.76, 131.58, 139.94, 147.20, 161.03, 203.94; Mass (70
eV) m/z (rel. intensity) 43 (10), 91 (20), 197 (61), 225 (99),
240 (M+, 100).
1. (a) Fougerousse, A.; Gonzalez, E.; Brouillard, R. J. Org.
Chem. 2000, 65, 583; (b) Ruchirawat, S.; Mutarapat, T.
Tetrahedron Lett. 2001, 42, 1205; (c) Klymchenko, A. S.;
Ozturk, T.; Pivovarenko, V. G.; Demchenko, A. P. Tetra-
hedron Lett. 2001, 42, 7967; (d) Appleton, R. A.; Bantick,
J. R.; Chamberlain, T. R.; Hardern, D. N.; Lee, T. B.;
Pratt, A. D. J. Med. Chem. 1977, 20, 371; (e) Perez-Ser-
rano, L.; Blanco-Urgoiti, J.; Casarrubios, L.; Dominguez,
G.; Perez-Castells, J. J. Org. Chem. 2000, 65, 3513; (f)
Rao, M. L. N.; Houjou, H.; Hiratani, K. Tetrahedron
Lett. 2001, 42, 8351; (g) Horino, Y.; Naito, M.; Kimura,
M.; Tanaka, S.; Tamuru, Y. Tetrahedron Lett. 2001, 42,
3113.
2. (a) Kobayashi, S.; Moriwaki, M.; Hachiya, I. Synlett 1995,
1153; (b) Kobayashi, S.; Moriwaki, M.; Hachiya, I. Tetra-
hedron Lett. 1996, 37, 2053 and references cited therein; (c)
Crouse, D. J.; Hurlbut, S. L.; Wheeler, D. M. S. J. Org.
Chem. 1981, 46, 374; (d) Zanatta, N.; Barichello, R.;
Bonacorso, H. G.; Martins, M. A. P. Synthesis 1999, 765;
(e) Cimarelli, C.; Palmieri, G. Tetrahedron 1998, 54, 15711.
3. Chamakh, A.; Amri, H. Tetrahedron Lett. 1998, 39, 375.
4. In order to confirm our assumption, we examined deacetyl-
ation of 3-benzyl-2,4-pentanedione. 4-Phenyl-2-butanone
was obtained in 92% yield in refluxing ethanol in the
presence of K2CO3. As expected, however, 3-benzyl-2,4-
pentanedione was remained intact after 3–4 h in DMF at
70–80°C. For more general references regarding deacetyla-
tion and decarboalkoxylation, see: (a) Krapcho, A. P.
Synthesis 1982, 805; (b) Bauchat, P.; Le Rouille, E.; Fou-
caud, A. Bull. Soc. Chim. Fr. 1991, 128, 267; (c) Beltaief,
I.; Amri, H. Synth. Commun. 1995, 25, 2981; (d) Kroutil,
W.; Osprian, I.; Mischitz, M.; Faber, K. Synthesis 1997,
156; (e) Celli, A. M.; Lampariello, L. R.; Chimichi, S.;
Nesi, R.; Scotton, M. Can. J. Chem. 1982, 60, 1327; (f)
Hamed, A. A.; Salem, M. A. I.; Hataba, A. M.; Attia, I.
A. Pol. J. Chem. 1985, 59, 1161.
Selected data for 6: oil; IR (KBr) 1646 cm−1 1H NMR
;
(CDCl3) l 2.19 (s, 3H), 2.47 (t, J=6.9 Hz, 2H), 2.99 (t,
J=6.9 Hz, 2H), 5.99 (s, 1H), 6.94 (s, 1H), 7.28–7.42 (m,
5H); 13C NMR (CDCl3) l 20.85, 26.78, 37.10, 127.63,
127.73, 128.43, 129.18, 131.27, 135.80, 136.51, 155.69,
199.25; Mass (70 eV) m/z (rel. intensity) 91 (24), 115 (31),
141 (38), 155 (72), 183 (27), 198 (M+, 100).
Selected data for 7: oil; IR (KBr) 3445, 1640 cm−1 1H
;
NMR (CDCl3) l 1.28 (t, J=6.9 Hz, 3H), 2.26 (s, 3H), 2.53
(s, 3H), 3.54 (qd, J=7.2 and 1.5 Hz, 2H), 5.45 (s, 1H),
6.77 (s, 1H), 7.27–7.37 (m, 5H), 7.67 (s, 1H), 12.19 (s, 1H);
13C NMR (CDCl3) l 15.40 (CH3), 19.92 (CH3), 26.46
(CH3), 64.79 (CH2), 80.24 (CH), 117.66 (C), 119.82 (CH),
127.46 (CH), 127.69 (CH), 128.44 (CH), 129.36 (CH),
131.21 (C), 140.76 (C), 146.46 (C), 161.51 (C), 204.20 (C);
Mass (70 eV) m/z (rel. intensity) 43 (17), 105 (22), 179 (44),
207 (85), 239 (100), 284 (M+, 84).
Selected data for 7%: oil; IR (KBr) 3464, 1643, 1089 cm−1
;
1H NMR (CDCl3) l 2.24 (s, 3H), 2.57 (s, 3H), 3.39 (s,
3H), 5.33 (s, 1H), 6.77 (s, 1H), 7.25–7.47 (m, 5H), 7.72 (s,
1H), 12.22 (s, 1H); 13C NMR (CDCl3) l 19.93, 26.52,
57.04, 82.04, 117.70, 119.85, 127.50, 127.79, 128.45, 129.08,
130.84, 140.34, 146.26, 161.52, 204.22; Mass (70 eV) m/z
(rel. intensity) 43 (13), 105 (14), 193 (100), 239 (100), 270
(M+, 90).
6. The structure of 5a was confirmed further by NOE exper-
iment. Irradiation of the benzylic proton (l=3.95 ppm)
showed NOE increment (0.9%) of methyl proton at 4-posi-
tion (l=2.21 ppm) and two aromatic protons (0.9 and
0.7%, respectively). From the NOE experiment we can
exclude the regioisomeric structure, 2-methyl-4-hydroxy-5-
benzylacetophenone.
7. We examined the reaction of Baylis–Hillman acetate
derived from hexanal as an example of aliphatic aldehydes.
However, intractable mixtures were formed due to many
side reactions. Elimination of acetic acid and subsequent
Diels–Alder reaction was one of the side reactions as
reported in our previous paper, see: Kim, J. N.; Lee, H. J.;
Lee, K. Y.; Gong, J. H. Synlett 2002, 173.
5. Selected data for 5a: white solid, mp 60–61°C; IR (KBr)
1
2917, 1638, 1491, 1450 cm−1; H NMR (CDCl3) l 2.21 (s,
3H), 2.54 (s, 3H), 3.95 (s, 2H), 6.80 (s, 1H), 7.09–7.29 (m,
5H), 7.42 (s, 1H), 12.17 (s, 1H); 13C NMR (CDCl3) l
20.35, 26.49, 38.65, 117.82, 119.63, 126.22, 128.45, 128.54,