Scheme 1. Synthesis of Glycosyl Donors and Protected Pyranmycins
biosamine component with a glycopyranose (Figure 1). We
only one example uses D-glucopyranose as the ring III
component via R and â linkages.15 However, the resulting
adducts were less active than neamine. With the envisioned
advantages of our pyranmycin design and our recently
synthesized library of glycopyranosyl donors,16 we report a
general procedure for the synthesis of pyranmycins together
with the results of structure activity relationship studies
targeting the ring III pyranose of pyranmycin.
Glycosyl trichloroacetimidates (glycosyl donors) were
obtained from the corresponding glycosyl acetate via selec-
tive hydrolysis of anomeric acetate with hydrazine acetate
in DMF, followed by treatment with trichloroacetonitrile in
the presence of catalytic amount of DBU. Acid-catalyzed
(BF3-OEt2) glycosylation of these glycosyl donors with
neamine derivative9 afforded the designed protected pyran-
mycins (Scheme 1). The â-glycosidic bond on ring III was
have named this novel aminoglycoside pyranmycin.
Another advantage of the pyranmycin design is that it can
serve as a template for further chemical modifications. With
recent advances in the structural analysis of the binding of
aminoglycosides to rRNA,4-7 these modifications can be
designed to increase the binding affinity toward the targeted
RNA molecules and disrupt enzyme-catalyzed inactivations,8
which are the most prevalent mechanisms of aminoglycoside
resistance from resistant bacteria. Hence, the resulting
aminoglycoside entities may regain the antibacterial activity
against resistant strains.
While many neomycin or ribostamycin analogues contain-
ing a ring III furanose with â linkage have been reported,9-14
(3) (a) Bochkov, A. F.; Zaikov, G. E. Chemistry of the O-Glycosidic
Bond: Formation and CleaVage; Pergamon Press: Elmsford, NY, 1979.
(b) Shallenberger, R. S.; Birch G., G. Sugar Chemistry; Avi Publishing
Co., Inc.: 1975.
(4) Fourmy, D.; Recht, M. I.; Puglisi, J. D. J. Mol. Biol. 1998, 277, 347-
362.
(10) Wong, C.-H.; Hendrix, M.; Manning, D. D.; Rosenbohm, C.;
Greenberg, W. A. J. Am. Chem. Soc. 1998, 120, 8319-8327.
(11) Yoshikawa, M.; Ikeda, Y.; Takenaka, K. Chem. Lett. 1984, 2097-
2100.
(5) Fourmy, D.; Recht, M. I.; Blanchard, S. C.; Puglisi, J. D. Science
1996, 274, 1367.
(12) Girodeau, J.-M.; Pineau, R.; Masson, M.; Le Goffic, F. J. Antibiotics
1984, 37, 150-158.
(6) Fourmy, D.; Yoshizawa, S.; Puglisi, J. D. J. Mol. Biol. 1998, 277,
333-345.
(13) Woo, P. W. K.; Haskell, T. H. J. Antibiotics 1982, 35, 692-702.
(14) (a) Kumar, V.; Remers, W. A. J. Org. Chem. 1978, 43, 3327-
3331. (b) Kumar, V.; Remers, W. A. J. Med. Chem. 1979, 22, 432-436.
(c) Kumar, V.; Jones, G. S., Jr.; Blacksberg, I.; Remers, W. A. J. Med.
Chem. 1980, 23, 42-49. (d) Kumar, V.; Remers, W. A. J. Org. Chem.
1981, 46, 4298-4300.
(7) Ma, C.; Baker, N. A.; Joseph, S.; McCammon, J. A. J. Am. Chem.
Soc. 2002, 124, 1438-1442.
(8) For example: Haddad, J.; Kotra, L. P.; Liano-Sotel, B.; Kim, C.;
Azucena, E. F., Jr.; Liu, M.; Vakulenko, S. B.; Chow, C. S.; Mobashery,
S. J. Am. Chem. Soc. 2002, 124, 3229-3237.
(15) (a) Endo, T.; Perlman, D. J. Antibiot. 1972, 25, 681-682. (b) Suami,
T.; Nishiyama, S.; Ishikawa, Y.; Katsura, S. Carbohydr. Res. 1977, 56,
414-418.
(9) Greenberg, W. A,; Priestley, E. S.; Sears, P. S.; Alper, P. B.;
Rosenbohm, C.; Hendrix, M.; Hung, S.-C.; Wong, C.-H. J. Am. Chem. Soc.
1999, 121, 6527-6541.
(16) Elchert, B.; Hui, Yu.; Chang, C.-W. T. Unpublished results.
4604
Org. Lett., Vol. 4, No. 26, 2002