atoms. The sulfur–selenium and selenium–tellurium bond
lengths are similar to those of acyclic molecules.5
Analysis of the cyclic voltammetric responses is diagnostic
for an essentially electrochemically reversible anodic step.
Cyclic voltamograms of 2b and 2d in acetonitrile at 20 °C under
argon atmosphere exhibited quasi-reversible redox waves (2b:
Epa = 0.39 V, Epc = 0.25 V; 2d: Epa = 0.36 V, Epc = 0.26 V)
versus Ag/0.01 mol dm23 AgNO3 (scan rate 100 mV s21). As
expected, incorporation of a heavier chalcogen, tellurium,
lowered oxidation peaks compared with sulfur or selenium
analogues,2 which could be explained by the ionization
potential arising from energy of the highest occupied molecular
orbital.6
In conclusion, we have shown that new redox active
trichalcogenaheterocycles with sulfur, selenium and tellurium
can be prepared from dichalcogenatitanacycles. Further studies
on reactions of mixed chalcogen ring systems are under way.
Scheme 2 Reagents and conditions: i, SCl2, THF; ii, SeOCl2, THF.
Notes and references
‡
Crystal data for 1b: C30H42OSSeTi, M = 577.58, orthorhombic, a =
10.109(4), b = 14.855(4), c = 18.680(4) Å, V = 2805(1) Å3, Z = 4, T =
296 K, space group P212121 (no. 19), Dc = 1.367 g cm23, m(Cu-Ka) =
49.04 cm21, 5630 reflections measured, 2852 unique (Rint = 0.107), 307
parameters, R = 0.055, Rw = 0.085 (on 1834 observed data [I > 3s(I)]).
CCDC 187544.
Crystal data for 2b: C10H12OSSeTe, M = 386.82, monoclinic, a =
7.373(2), b = 16.563(3), c = 10.046(2) Å, b = 94.66(2)°, V = 1222.7(5)
Å3, Z = 4, T = 294 K, space group P21/a (no. 14), Dc = 2.101 g cm23
,
m(Mo-Ka) = 55.5 cm21, 2420 reflections measured, 2240 unique (Rint
=
0.008), 176 parameters, R = 0.021, Rw = 0.037 (on 1926 observed data [I
> 1.50s(I)]). CCDC 187545.
Crystal data for 2d: C10H12OSe2Te, M = 433.72, monoclinic, a =
7.389(3), b = 16.581(3), c = 10.165(2) Å, b = 93.14(3)°, V = 1243.6(6)
Å3, Z = 4, T = 296 K, space group P21/a (no. 14), Dc = 2.316 g cm23
,
m(Mo-Ka) = 82.1 cm21, 2467 reflections measured, 2282 unique (Rint
=
0.013), 176 parameters, R = 0.033, Rw = 0.039 (on 2192 observed data [I
> 0.00s(I)]). CCDC 187546.
data in .cif or other electronic format.
1 T. S. Cameron, R. C. Haddon, S. M. Matter, S. Parsons, J. Passmore and
A. P. Ramirez, J. Chem. Soc., Chem. Commun., 1991, 358; T. S.
Cameron, R. C. Haddon, S. M. Matter, S. Parsons, J. Passmore and A. P.
Ramirez, J. Chem. Soc., Dalton Trans., 1992, 1563; G. Wolmershäuser
and H. Heckmann, Angew. Chem., Int. Ed. Engl., 1992, 31, 779; S.
Ogawa, S. Nobuta, R. Nakayama, Y. Kawai, S. Niizuma and R. Sato,
Chem. Lett., 1996, 757; S. Ogawa, M. Kikuchi, Y. Kawai, S. Niizuma and
R. Sato, Chem. Commun., 1999, 1891.
2 S. Ogawa, T. Ohmiya, T. Kikuchi, A. Kawaguchi, S. Saito, A. Sai, N.
Ohyama, Y. Kawai, S. Niizuma, S. Nakajo and R. Sato, J. Organomet.
Chem., 2000, 611, 136.
3 D. Schröder, H. Schwarz, B. Löbrecht, W. Koch and S. Ogawa, Eur. J.
Inorg. Chem., 1998, 983.
4 K. Lerstrup, D. Tslha, A. Bloch, T. Poehler and D. Cowan, J. Chem. Soc.,
Chem. Commun., 1982, 226; R. D. McCullough, G. B. Kok, K. A.
Lerstrup and D. O. Cowan, J. Am. Chem., Soc., 1987, 109, 4115; G.
Schukat, A. M. Richter and E. Fanghänel, Sulfur Rep., 1987, 7, 155; G.
Schukat and E. Fanghänel, Sulfur Rep., 1993, 14, 245.
Fig. 2 Molecular structure of 2b. Selected bond distances (Å) and angles (°):
Te(3)–Se(2) 2.5306(5), Se(2)–S(1) 2.2218(9), Te(3)–C(8) 2.101(3), S(1)–
C(9) 1.779(3); Se(2)–Te(3)–C(8) 86.16(8), Se(2)–S(1)–C(9) 99.68(10),
Te(3)–Se(2)–S(1) 90.54(3), Te(3)–C(8)–C(9) 121.2(2), S(1)–C(9)–C(8)
119.6(2); S(1)–Se(2)–Te(3)–C(8) 35.98(7), Te(3)–Se(2)–S(1)–C(9)
242.83(9), Se(2)–S(1)–C(9)–C(8) 36.8(2), Se(2)–Te(3)–C(8)–C(9)
225.8(2), Te(3)–C(8)–C(9)–S(1) 24.4(3).
5 I. Hargittai and B. Rozsonzai, in The Chemistry of organic selenium and
tellurium compounds, Vol. 1, eds. S. Patai and Z. Rappoport, John Wiley
and Sons, 1986, pp. 63–155.
6 Unpublished results from our laboratory. The data will be discussed in a
full paper.
2-position lies out of this plane (S(1)–Se(2)–Te(3)–C(8)
35.98(7), Te(3)–Se(2)–S(1)–C(9) 242.83(9)). The distorted
geometry of the five-membered ring implies the presence of
lone-pair–lone-pair repulsion of three divalent chalcogen
CHEM. COMMUN., 2002, 1918–1919
1919