10.1002/chem.201901828
Chemistry - A European Journal
COMMUNICATION
BSA (0.03-1 mg/mL) in 4 mg/mL HepG2 cell lysate though SDS-
PAGE. All the samples were treated with the standard protocol
and analyzed by SDS-PAGE (Figure 4C). The CB staining
indicated that equal amount of protein was loaded (right panel of
Figure 4C). In fluorescent detection, the signal could be clearly
detected as low as 7.5 picomole of 3-NT-BSA (Figure 4C, Figure
S11 in SI). Moreover, the data showed this method was
accurate with a linear correlation of 0.998 in the range of 0.9 to
15 μM of 3-NT-BSA (Figure S12 in SI). It demonstrates high
sensitivity and great potential of the azo coupling strategy for
detection of the PTN in biological samples.
Foundation of Gansu Province (18JR4RA003, 17JR5RA193)
and the 111 project.
Keywords: azo coupling • bioorthogonal reactions • protein 3-
nitrotyrosine • protein modification •
[1] a) G. Ferrer-Sueta, N. Campolo, M. Trujillo, S. Bartesaghi, S. Carballal, N.
Romero, B. Alvarez, R. Radi, Chem. Rev. 2018, 118, 1338-1408; b) R. Radi, Acc
Chem Res 2013, 46, 550-559; c) J. Frijhoff, P. G. Winyard, N. Zarkovic, S. S.
Davies, R. Stocker, D. Cheng, A. R. Knight, E. L. Taylor, J. Oettrich, T.
Ruskovska, A. C. Gasparovic, A. Cuadrado, D. Weber, H. E. Poulsen, T. Grune,
H. Schmidt, P. Ghezzi, Antioxid. Redox Signal. 2015, 23, 1144-1170; d) A. Bachi,
I. Dalle-Donne, A. Scaloni, Chem Rev 2013, 113, 596-698.
To investigate the compatibility of our strategy, we next
applied this protocol to detect PTN in cell lysate. The HepG2 cell
lysate was nitrated by TNM, and then the lysate was subjected
to derivatization by our azo coupling strategy (Table S15 in SI).
As shown in the left panel of Figure 4D, a clear fluorescence
signal was seen from the nitrated sample, while all other control
samples showed negligible fluorescence. The CB staining
indicated that equal amount of protein was loaded into each lane
(right panel of Figure 4D).
[2] E. S. Gonos, M. Kapetanou, J. Sereikaite, G. Bartosz, K. Naparlo, M. Grzesik, I.
Sadowska-Bartosz, Aging-US 2018, 10, 868-901.
[3] a) B. I. Giasson, J. E. Duda, I. V. J. Murray, Q. P. Chen, J. M. Souza, H. I. Hurtig,
H. Ischiropoulos, J. Q. Trojanowski, V. M. Y. Lee, Science 2000, 290, 985-989; b)
M. H. Shishehbor, R. J. Aviles, M. L. Brennan, X. M. Fu, M. Goormastic, G. L.
Pearce, N. Gokce, J. F. Keaney, M. S. Penn, D. L. Sprecher, J. A. Vita, S. L.
Hazen, JAMA-J. Am. Med. Assoc. 2003, 289, 1675-1680; c) N. T. Moldogazieva,
S. V. Lutsenko, A. A. Terentiev, Cancer Res. 2018, 78, 6040-6047; d) H. Tohgi, T.
Abe, K. Yamazaki, T. Murata, E. Ishizaki, C. Isobe, Ann. Neurol. 1999, 46, 129-
131.
With all above mentioned results, we turned our attention to
application of the azo coupling strategy in nitrated bio-samples.
In order to mimic the real nitration process in cells, the HepG2
cells were treated with different concentration of peroxynitrite in
the phosphate buffer saline (PBS) in cell culture plates (Figure
S13 in SI). Followed by cell collection and lysis, the cell lysate
was derivatized and analyzed by our strategy (Figure 4E). The
result suggested that our strategy has ability to label the in situ
generated 3-NT-containing protein in cells, and has potential to
be used to derivatize 3-NT-containing protein in other biological
or pathological samples.
[4] F. Dekker, N. Abello, R. Wisastra, R. Bischoff, Curr Protoc Protein Sci 2012,
Chapter 14, Unit 14 13.
[5] a) N. Abello, H. A. M. Kerstjens, D. S. Postma, R. Bischoff, J. Proteome Res.
2009, 8, 3222-3238; b) X. Q. Zhan, X. W. Wang, D. M. Desiderio, Mass
Spectrom. Rev. 2015, 34, 423-448; c) D. Teixeira, R. Fernandes, C. Prudencio,
M. Vieira, Biochimie 2016, 125, 1-11.
[6] I. Girault, A. E. Karu, M. Schaper, M. H. Barcellos-Hoff, T. Hagen, D. S. Vogel, B.
N. Ames, S. Christen, M. K. Shigenaga, Free Radic. Biol. Med. 2001, 31, 1375-
1387.
[7] a) L. Prokai, J. Guo, K. Prokai-Tatrai, Nat. Protoc. 2014, 9, 882-895; b) Q. Zhang,
W. J. Qian, T. V. Knyushko, T. R. W. Clauss, S. O. Purvine, R. J. Moore, C. A.
Sacksteder, M. H. Chin, D. J. Smith, D. G. Camp, D. J. Bigelow, R. D. Smith, J.
Proteome Res. 2007, 6, 2257-2268.
In summary, an azo coupling strategy for selective
derivatization of 3-NT-containing proteins has been developed.
With the simple operation and relatively low cost, the picomole
level of PTN is able to be derivatized within 2 h and compatible
with different kinds of proteins from biological samples. The high
chemo-selectivity to 3-NT-containing protein of this strategy
makes it unnecessary to block any other amino groups. As a
cleavable linkage, the azo bond minimized the influence caused
by sample derivatization to the following antibody-related
analysis. Furthermore, with the introduction of the bioorthogonal
azide group, samples can be used in multiple studies with only
being derivatized once. It also makes the combination of this
strategy and instrumental analysis (e.g., HPLC-MS, tandem MS)
very convenient. Although the need of a buffer exchange
process between the reduction and azo coupling steps may limit
it practical use, this strategy provides an effective and
convenience way to specifically introduce bioorthogonal group to
3-NT for the detection and enrichment of 3-NT-containing
proteins, which facilitates to explore the functions of PTN under
physiological and pathological conditions.
[8] a) J. R. Lee, S. J. Lee, T. W. Kim, J. K. Kim, H. S. Park, D. E. Kim, K. P. Kim, W.
S. Yeo, Anal Chem 2009, 81, 6620-6626; b) T. Nuriel, J. Whitehouse, Y. Ma, E. J.
Mercer, N. Brown, S. S. Gross, Front Chem 2015, 3, 70.
[9] a) V. S. Sharov, R. Pal, E. S. Dremina, E. K. Michaelis, C. Schoneich, Free Radic
Biol Med 2012, 53, 1877-1885; b) E. S. Dremina, X. B. Li, N. A. Galeva, V. S.
Sharov, J. F. Stobaugh, C. Schoneich, Anal. Biochem. 2011, 418, 184-196.
[10] a) R. Sangsuwan, A. C. Obermeyer, P. Tachachartvanich, K. K. Palaniappan, M.
B. Francis, Chem Commun 2016, 52, 10036-10039; b) A. M. ElSohly, M. B.
Francis, Acc Chem Res 2015, 48, 1971-1978; c) C. R. Behrens, J. M. Hooker, A.
C. Obermeyer, D. W. Romanini, E. M. Katz, M. B. Francis, Journal Of The
American Chemical Society 2011, 133, 16398-16401.
[11] J. M. Hooker, A. P. Esser-Kahn, M. B. Francis, J Am Chem Soc 2006, 128,
15558-15559.
[12] J. Y. Ng, J. W. Wong, Org Biomol Chem 2015, 13, 374-378.
[13] a) M. W. Jones, G. Mantovani, C. A. Blindauer, S. M. Ryan, X. Wang, D. J.
Brayden, D. M. Haddleton, J Am Chem Soc 2012, 134, 7406-7413; b) L. Tan, Y.
Liu, Q. Yang, X. Li, X. Y. Wu, B. Gong, Y. M. Shen, Z. Shao, Chem Commun
2016, 52, 954-957; c) S. S. Liew, S. Du, J. Ge, S. Pan, S. Y. Jang, J. S. Lee, S.
Q. Yao, Chem Commun 2017, 53, 13332-13335.
[14] a) C. Batthyany, S. Bartesaghi, M. Mastrogiovanni, A. Lima, V. Demicheli, R.
Radi, Antioxid Redox Signal 2017, 26, 313-328; b) D. Tsikas, M. W. Duncan,
Mass Spectrom. Rev. 2014, 33, 237-276.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21572093 & 21778028), Natural Science
This article is protected by copyright. All rights reserved.