7624
T. V. R. S. Sastry et al. / Tetrahedron Letters 43 (2002) 7621–7625
N
H
N
H
HN
HN
Ph
Ph
O
O
O
O
H
H
N
N
N
N
O
O
O
O
9
8
Figure 3. The dehydrophenylalanine residue has been replaced by L-Phe and D-Phe in 8 and 9 respectively.
Chem., Int. Ed. Engl. 1997, 36, 2036–2056 and references
cited therein; (g) Furstner, A. Angew. Chem., Int. Ed.
2000, 39, 3012–3043 and references cited therein; (h)
Miller, S. C.; Blackwell, H. E.; Grubbs, R. H. J. Am.
Chem. Soc. 1996, 118, 9606–9614.
On the other hand peptide 9 was cyclized in a very poor
yield (5–10%). These results clearly indicate that the
close proximity of the terminal olefins, a prerequisite
for RCM cyclization, is missing in peptides 8 and 9.
Furthermore absence of the b-turn in 8 and 9, also
supports the role of the DPhe induced b-turn preorgani-
zation of 6 leading to the proximity of terminal alkenes
for a successful RCM reaction.
4. (a) Patel, H. C.; Singh, T. P.; Chauhan, V. S.; Kaur, P.
Biopolymer 1990, 29, 509; (b) Ciajolo, M. R.; Tuzi, A.;
Pratesi, C. R.; Fissi, A.; Pieroni, O. Biopolymer 1992, 32,
727; (c) Rajashankar, K. R.; Ramakumar, S.; Chauhan,
V. S. J. Am. Chem. Soc. 1992, 114, 9225; (d) Pieroni, O.;
Fissi, A.; Pratesi, C.; Temussi, P. A.; Ciardelli, F. Bio-
polymer 1994, 33, 1.
In conclusion, we have demonstrated that the DPhe
residue present in peptide 6 can invoke a 310 helical
structure which changes into a simple b-turn structure
after RCM cyclization. We are currently pursuing the
cyclization studies on the related helical structures.
5. Prabhakaran, E. N.; Rajesh, V.; Dubey, S.; Iqbal, J.
Tetrahedron Lett. 2001, 42, 339–342.
6. (a) Slee, D. H.; Laslo, K. L.; Elder, J. H.; Ollmann, I. R.;
Gustchina, A.; Kervinen, J.; Zdanov, A.; Wlodawer, A.;
Wong, C. J. Am. Chem. Soc. 1995, 117, 11867; (b) Lam,
P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.;
Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner,
M. M.; Wong, Y. N.; Chang, C.-H.; Weber, P. C.;
Jackson, D. A.; Sharpe, T. R.; Erickson-Vitanen, S.
Science 1994, 263, 380.
References
1. (a) Smith, A. B.; Hirschmann, R.; Pasternak, A.; Guz-
man, M. C.; Yokohama, A.; Sprengeler, P. A.; Darke, P.
L.; Emini, E. A.; Schleif, W. A. J. Am. Chem. Soc. 1995,
117, 11113; (b) Martin, S. F.; Austin, R. E.; Oalmann, C.
J.; Baker, W. R.; Condon, S. L.; DeLara, E.; Rosenberg,
S. N.; Spina, K. P.; Stein, H. H.; Cohen, J.; Kleinert, H.
D. J. Med. Chem. 1992, 35, 1710; (c) Kim, E. E.; Baker,
C. T.; Dwyer, M. D.; Murcko, M. A.; Rao, B. G.; Tung,
R. D.; Navia, M. A. J. Am. Chem. Soc. 1995, 117, 1181;
(d) Martin, S. F.; Dorsey, D. O.; Gane, T.; Hillier, M.;
Kessler, H.; Baur, M.; Matha, B.; Erickson, J.; Bhat, T.
N.; Munshi, S.; Gulnik, S. V.; Topol, I. A. J. Med. Chem.
1998, 41, 1581.
2. For peptides derived from dehydro amino acids, see: (a)
Stammer, C. H. Chemistry and Biochemistry of Amino
Acids, Peptides and Protein; Weinstien, B., Ed.; Marcel
Dekker: New York, 1982; Vol. IV, p. 3; (b) Schmidt, U.;
Lieberknecht, A.; Wild, J. Synthesis 1988, 159; (c)
Nunami, K.; Hirmatsu, K.; Hayashi, K.; Matsumoto, K.
Tetrahedron 1988, 44, 5467. Also see: (d) Hruby, V. J.;
Yamamura, H. I.; Porreca, F. Ann. NY Acad. Sci. 1995,
757, 7–22 and references cited therein.
7. Prabhakaran, E. N.; Nandy, J. P.; Shukla, S.; Tewari, A.;
Das, S. K.; Iqbal, J. Tetrahedron Lett. 2002, 43, 6461.
8. (a) Rose, G. D.; Gierasch, L. M.; Smith, J. A. In Turns in
Peptides and Proteins; Advances in Protein Chemistry;
Academic Press: New York, 1985; (b) Farmer, P. S. In
Drug Design; Ariens, E. J., Ed.; Academic: New York,
1980; Vol. 10, pp. 119–143; (c) Feng, Y.; Pattarawarapan,
M.; Wang, Z.; Burgess, K. Org Lett. 1999, 1, 121; (d)
Belvisi, L.; Bernardi, A.; Manzoni, L.; Potenza, D.; Sco-
lastico, C. Eur. J. Org. Chem. 2000, 2563–2569; (e) Kaul,
R.; Angeles, A. R.; Jager, M.; Powers, E. T.; Kelly, J. J.
Am. Chem. Soc. 2001, 123, 5206–5212; (f) Feng, Y.;
Wang, Z.; Jin, S.; Burgess, K. J. Am. Chem. Soc. 1998,
120, 10768; (g) Feng, Y.; Pattarawarapan, M.; Wang, Z.;
Burgess, K. J. Org. Chem. 1999, 64, 9175–9177; (h)
Burgess, W. L. Tetrahedron Lett. 1999, 40, 6527–6530; (i)
Zhang, A. J.; Khare, S.; Kuppan, G. D.; Linthicum, S.;
Burgess, K. Bioorg. Med. Chem. Lett. 2001, 11, 207–210.
9. Standard amide coupling procedure: To an ice-cold stirred
solution of N-pentenoyl proline acid (1 equiv.) in dry
dichloromethane (5 mL) was added triethylamine (1
equiv.) followed by isobutyl chloroformate (1 equiv.).
The resulting mixture was stirred vigorously for 5 min
and then XAA-leucine allyl amide (1 equiv.) was added
followed by 1 equiv. of triethylamine. It was stirred for 5
h. After that the reaction mixture was washed thoroughly
3. (a) Flink, B. E.; Kym, P. R.; Katzenellenbogen, J. A. J.
Am. Chem. Soc. 1998, 120, 4334–4344; (b) Ripka, A. S.;
Bohacek, R. S.; Rich, D. H. Bioorg. Med. Chem. Lett.
1998, 8, 357; (c) Nguyen, S. T.; Johnson, L. K.; Grubbs,
R. H.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 3974;
(d) Herisson, J. L.; Chauvin, Y. Makromol. Chem. 1970,
141, 161; (e) Phillips, A. J.; Abell, A. J. Aldrichim. Acta
1999, 32, 75–90; (f) Schuster, M.; Blechert, S. Angew.