Table 2 Electroluminescence data for the compounds
b
c
d
e
f
g
h
i
j
Devicea
lEL/nm
Von
V20
Vmax
B20
Bmax
h20
hmax
lm/W20
lm/Wmax
1
2
3
4
5
6
7
8
9
476
530
540
538
532
535
537
542, 578
542, 578
4.3
2.5
2.5
2.5
2.5
2.0
2.0
2.0
2.0
8.3
8.3
11.5
9.6
9.0
6.8
6.8
7.9
8.4
11.5
12.0
16.0
12.5
13.0
11.5
12.0
18.0
7
770
750
1050
740
870
710
2050
1970
260
18 600
16 100
9000
16 650
30 400
30 800
182 800
180 400
0.1
1.2
1.2
1.7
1.2
1.4
1.2
2.8
2.6
0.2
1.3
1.3
1.8
1.4
1.5
1.3
2.8
2.7
0.1
1.5
1.0
2.1
1.3
2.1
1.6
4.1
3.8
0.3
1.6
1.1
2.2
1.4
3.6
2.7
10.1
9.3
a Device configurations (thickness of each layer is described in the text): device 1: ITO/PEDT+PSS/2a/Mg+Ag/Ag; devices 2–5: ITO/PEDT+PSS/HTL/Alq3/
Mg+Ag/Ag (HTL for device 2: 2a; device 3: 2b; device 4: 2c; device 5: 1); devices 6–7: ITO/PEDT+PSS/HTL/Alq3/LiF/Al (HTL for device 6: 2a; device
7: 1); devices 8–9: ITO/PEDT+PSS/HTL/Alq3+3/Alq3/LiF/Al (HTL for device 8: 2a; device 9: 1). b Turn-on voltage (V) at which emission starts to be
detectable. c Voltage (V) taken at a current density of 20 mA cm22 d Voltage (V) at the maximum brightness. e Brightness (cd m22) taken at V20. f Maximal
.
. .
brightness. g External quantum efficiency at 20 mA cm22 h Maximal external quantum efficiency. i Luminous efficiency at 20 mA cm22 j Maximal
luminous efficiency.
comparable with or somewhat better than those employing the
conventional a-NPD 1.
We thank the Ministry of Education, Academia Sinica, and
the National Science Council of the Republic of China for
support and Professor Suit Tong Lee of the City University of
Hong Kong for stimulating discussions.
Notes and references
‡ All new compounds gave satisfactory spectroscopic and analytical data.
The details are described in the ESI.†
1 C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
2 For a recent review, see Y. Shirota, J. Mater. Chem., 2000, 10, 1 and
references therein.
3 (a) S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett., 1996,
69, 2160; (b) D. F. O’Brien, P. E. Burrows, S. R. Forrest, B. E. Koene,
D. E. Loy and M. E. Thompson, Adv. Mater., 1998, 10, 1108.
4 (a) J. Kido and Y. Iizumi, Appl. Phys. Lett., 1998, 73, 2721; (b) C. H.
Chen and C. W. Tang, Appl. Phys. Lett.,, 2001, 79, 3711.
5 C.-C. Wu, C.-W. Chen, Y.-T. Lin, H. -L Yu, J.-H. Hsu and T.-Y. Luh,
Appl. Phys. Lett., 2001, 79, 3023.
Fig. 1 A comparison of the performance of devices 2–5 with theconfigura-
tion ITO/PEDT+PSS/HTL (40 nm)/Alq3 (60 nm)/Mg+Ag(800 nm)/Ag
(150 nm), where HTL is 2a (device 2, solid line), or 2b (device 3, dash line),
or 2c (device 4, dotted line) or 1 (device 5, dash-dotted line).
6 (a) H. Heil, J. Steiger, R. Schmechel and H. Seggern, J. Appl. Phys.,
2001, 90, 5357; (b) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov,
S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151.
7 (a) C. W. Ko and Y. T. Tao, Appl. Phys. Lett., 2001, 79, 4234; (b) Y. Liu,
J. Guo, H. Zhang and Y. Wang, Angew. Chem., Int. Ed., 2002, 41,
182.
8 (a) J. M. Tour, Acc. Chem. Res., 2000, 33, 791; (b) Electronic Materials:
The Oligomer Approach, ed. K. Müllen and G. Wegner, Wiley-VCH,
Weinheim, 1998; (c) U. Mitschke, E. M. Osteritz, T. Debaerdemaeker,
M. Sokolowski and P. Bäuerle, Chem. Eur. J., 1998, 4, 2211.
9 For a review see: A. Gandini and M. N. Belgacem, Prog. Polym. Sci.,
1997, 22, 1203 and references therein.
10 H. Saadeh, T. Goodson and L. Yu, Macromolecules, 1997, 30, 4608.
11 (a) R. E. Niziurski-Mann and M. P. Cava, Adv. Mater., 1993, 5, 547; (b)
R. E. Niziurski-Mann, C. Scordillis-Kelley, T.-L. Liu, M P. Cava and R.
T. Carlin, J. Am. Chem. Soc., 1993, 115, 887; (c) A. Hucke and M. P.
Cava, J. Org. Chem., 1998, 63, 7413; (d) J. K. Politis, J. C. Nemes and
M. D. Curtis, J. Am. Chem. Soc., 2001, 123, 2537.
12 G. Dufresne, J. Bouchard, M. Belletete, G. Durocher and M. Leclerc,
Macromolecules, 2000, 33, 8252; C. Adachi, T. Tsutsui and S. Saito,
Appl. Phys. Lett., 1990, 56, 799.
single layer device constituted of ITO/PEDT+PSS/2a (120 nm)/
Mg+Ag (800 nm)/Ag (150 nm) (device 1), exhibited a blue
emission at 476 nm.16 Double layered devices with the
configuration ITO/PEDT+PSS/HTL (40 nm)/Alq3 (60 nm)/
Mg+Ag (800 nm)/Ag (150 nm) were fabricated. The HT
materials used here were 2a–c (devices 2–4) and 1 (device 5).
The brightness–voltage curves are compared in Fig. 1. All of the
devices exhibited typical emission of Alq3 at ca. 535 nm having
similar turn-on voltage and external quantum efficiency.
When LiF/Al was used as the cathode in the devices with the
configuration ITO/PEDT+PSS/HTL (40 nm)/Alq3 (60 nm)/LiF
(0.5 nm)/Al (150 nm), where HTL was either 2a (device 6) or 1
(device 7), the turn-on voltages were lowered to 2.0 V. The
external quantum efficiency of device 6 was 1.5% and the
maximum brightness for both devices 6 and 7 was increased to
3 3 104 cd m22
.
When N,N-dimethylquinacridone (DMQA 3) was employed
as the dopant,17 multilayer devices ITO/PEDT+PSS/HTL (40
nm)/Alq3+3 (20 nm)/Alq3 (40 nm)/LiF (0.5 nm)/Al (150 nm),
where HTL was either 2a (device 8) or 1 (device 9), were
fabricated. The optimal concentration of 3 in Alq3 was found to
be 0.5%, providing an external quantum efficiency of 2.8% and
a maximum luminance of 182 800 cd m22 at 18 V for device 8.
The external quantum efficiency and the maximal luminance for
device 9 were 2.7% and 180 200 cd m22 at 19.5 V,
respectively.
In summary, we have depicted, for the first time, a new class
of highly stable furan-based hole transporting oligomeric
materials for electroluminescent devices. The performance of
the devices by using these furan materials appeared to be
13 S. Yamaguchi and K. Tamao, J. Chem. Soc., Dalton Trans., 1998,
3693.
14 C.-F. Lee, L.-M. Yang, T.-Y. Hwu, A.-S. Feng, J.-C. Tseng and T.-Y.
Luh, J. Am. Chem. Soc., 2000, 122, 4992.
15 J. A. E. H. van Haare, L. Groenendaal, H. W. I. Peerlings, E. E. Havinga,
J. A. J. M. Vekemans, R. A. J. Janssen and E. W. Meijer, Chem. Mater.,
1995, 7, 1984.
16 For the use of poly(ethylenedioxy)thiophene+polystyrene sulfonate
(PEDT+PSS) for efficient hole injection in OLEDs, see: A. Elschner, F.
Bruder, H.-W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm
and R. Wehrmann, Synth. Met., 2000, 111–112, 139. For a recent review
on the use of PEDT+PSS, see: L. Groenendaal, F. Jonas, D. Freitag, H.
Pielartzik and J. R. Reynolds, Adv. Mater., 2000, 12, 481.
17 J. Shi and C. W. Tang, Appl. Phys. Lett., 1997, 70, 1665.
CHEM. COMMUN., 2002, 2336–2337
2337