3372
D. Vourloumis et al. / Bioorg. Med. Chem. Lett. 12 (2002) 3367–3372
5. Wong, C.-H.; Hendrix, M.; Priestley, E. S.; Greenberg,
W. A. Chem. Biol. 1998, 5, 397.
complexes2 and high-resolution crystal structures of a syn-
thetic 35 nt RNA construct containing the bacterial decoding
site internal loop (Q. Zhao, Q. Han, T. Hermann, unpub-
lished). The conformational space available to the 60-hydroxyl
group of paromamine docked to the decoding site RNA was
explored using Insight/Discover (Accelrys) and the AMBER
force field following established protocols: Hermann, T.;
Westhof, E. J. Med. Chem. 1999, 42, 1250.
6. (a) Recht, M. I.; Fourmy, D.; Blanchard, S. C.; Dahlquist,
K. D.; Puglisi, J. D. J. Mol. Biol. 1996, 262, 421. (b) Fourmy,
D.; Recht, M. I.; Blanchard, S. C.; Puglisi, J. D. Science 1996,
274, 1367. (c) Fourmy, D.; Yoshizawa, S.; Puglisi, J. D. J.
Mol. Biol. 1998, 277, 333. (d) Fourmy, D.; Recht, M. I.; Pug-
lisi, J. D. J. Mol. Biol. 1998, 277, 347.
7. Vicens, Q.; Westhof, E. Structure 2001, 9, 647.
8. Ma, C.; Baker, N. A.; Joseph, S.; McCammon, J. A. J. Am.
Chem. Soc. 2002, 124, 1438.
23. Cavender, C. J.; Shiner, V. J. J. Org. Chem. 1972, 37, 3567.
24. Alper, P. B.; Hung, S.-C.; Wong, C.-H. Tetrahedron Lett.
1996, 37, 6029.
9. Alper, P.; Hendrix, M.; Sears, P.; Wong, C.-H. J. Am.
Chem. Soc. 1998, 120, 1965.
25. Nakajima, N.; Horita, K.; Abe, R.; Yonemitsu, O. Tetra-
hedron Lett. 1988, 29, 4139.
10. Greenberg, W. A.; Priestley, E. S.; Sears, P. S.; Alper,
P. B.; Rosenbohm, C.; Hendrix, M.; Hung, S.-C.; Wong, C.-
H. J. Am. Chem. Soc. 1999, 121, 6527.
11. Hanessian, S.; Tremblay, M.; Kornienko, A.; Moitessier,
N. Tetrahedron 2001, 57, 3255.
12. Haddad, J.; Kotra, L. P.; Llano-Sotelo, B.; Kim, C.;
Azucena, E. F.; Liu, M.; Vakulenko, S. B.; Chow, C. S.;
Mobashery, S. J. Am. Chem. Soc. 2002, 124, 3229.
13. (a) Hermann, T. Angew. Chem. 2000, 39, 1890. (b) Her-
mann, T.; Westhof, E. Comb. Chem. High Throughput Screen
2000, 3, 219. (c) Gallego, J.; Varani, G. Acc. Chem. Res. 2001,
34, 836.
26. Binkley, R. W.; Ambrose, M. G.; Hehemann, D. G. J.
Org. Chem. 1980, 45, 4387.
27. Soli, E. D.; Manoso, A. S.; Patterson, M. C.; DeShong, P.
J. Org. Chem. 1999, 64, 3171.
28. Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A.; Parker,
D. J. Org. Chem. 1984, 49, 3928.
29. ꢀ,ꢁ-Unsaturated aldehyde 14: 1H NMR (400 MHz,
CDCl3) d 9.40 (s, 1H), 7.58–7.22 (m, 15H), 6.78 (bs, 1H), 5.06–
4.86 (m, 5H), 4.65 (bd, JA,B=13.1 Hz, 1H), 4.58 (bd,
JA,B=13.1 Hz, 1H), 4.46–4.38 (m, 1H), 4.20–4.11 (m, 1H),
3.86–3.76 (m, 1H), 2.37–2.24 (m, 1H), 2.05–1.95 (m, 1H); 13C
NMR (100.1 MHz, CDCl3) d 191.7, 155.6, 155.6, 148.0, 140.0,
137.2, 136.2, 136.1, 128.4 (3C), 128.0 (6C), 75.1, 71.8, 66.9,
55.5, 50.3, 44.8, 32.6.
14. Kotra, L. P.; Haddad, J.; Mobashery, S. Antimicrob.
Agents Chemother. 2000, 44, 3249.
15. (a) Tor, Y.; Hermann, T.; Westhof, E. Chem. Biol. 1998,
5, R277. (b) Michael, K.; Tor, Y. Chem. Eur. J. 1998, 4, 2091.
(c) Hermann, T.; Westhof, E. Biopolym. Nucl. Acid Sci. 1999,
48, 155. (d) Suchek, S. J.; Shue, Y.-K. Curr. Opin. Drug Dis-
cov. Develop. 2001, 4, 462.
16. (a) Park, W. K.; Auer, M.; Jaksche, H.; Wong, C.-H. J.
Am. Chem. Soc. 1996, 118, 10150. (b) Nunns, C. L.; Spence,
L. A.; Slater, M. J.; Berrisford, D. J. Tetrahedron Lett. 1999,
40, 9341.
17. Simonsen, K. B. Ayida, B.; Vourloumis, D.; Takahashi,
M.; Winters, G. C.; Barluenga, S.; Qamar, S.; Shandrick, S.;
Zhao, Q.; Hermann, T. ChemBioChem. In press.
18. Wuonola, M. A.; Powers D. G. In Use of Combinatorial
Libraries in the Discovery of Novel Antiinfectives; Chaiken, I.
M., Janda K. D., Eds.; American Chemical Society:
Washington, DC, 1996; p 284.
30. Suami, T.; Nishiyama, S.; Isikawa, Y.; Katsura, S. Car-
bohydr. Res. 1997, 53, 239.
31. ꢀ,ꢁ-Unsaturated carboxylic acid 15: H NMR (400 MHz,
1
dimethyl-d6 sulfoxide) d 12.5 (s, 1H), 7.58–7.21 (m, 15H), 6.63
(bs, 1H), 5.16–4.93 (m, 4H), 4.63 (d, JA,B=13.0 Hz, 1H), 4.55
(bd, JA,B=13.1 Hz, 1H), 4.55–4.42 (m, 1H), 4.18–4.05 (m,
1H), 3.72–3.60 (m, 1H), 2.13–1.99 (m, 1H), 1.71–1.58 (m, 1H),
13C NMR (100.1 MHz, dimethyl-d6 sulfoxide) d 167.7, 156.6,
156.3, 139.3, 139.0, 138.2, 138.1, 134.7, 129.3, 129.2, 129.1,
128.7, 128.6, 128.6, 128.5, 128.4, 128.4, 77.2, 71.6, 66.2, 66.0,
51.5, 47.3, 31.3.
32. For amines 16c and 16i the final hydrogenation step
resulted in cleavage of the furane or partial reduction of the
pyrazine ring, respectively, leading to the formation of pro-
ducts 17c and 17i.
33. Zhang, J.-H.; Chung, T. D. Y.; Oldenburg, K. R. J. Bio-
mol. Screening 1999, 2, 67.
19. Ding, Y.; Hofstadler, S. A.; Swayze, E. E.; Griffey, R. H.
Org. Lett. 2001, 3, 1621.
20. Kurisu, T.; Yamashita, M.; Nishimura, Y.; Miyake, T.;
Tsuchiya, T.; Umezawa, S. Bull. Chem. Soc. Jpn. 1976, 49, 285.
21. Georgiadis, M. P.; Constantinou-Kokotou, V. J. Carbo-
hydr. Chem. 1991, 10, 739.
34. Representative example of the final 2,5-dDOS-4-amides,
17h: 1H NMR (400 MHz, CD3OD) d 3.58–3.45 (m, 4H),
3.34–3.24 (m, 1H), 3.14–3.05 (m, 1H), 2.85–2.54 (m, 6H), 2.01
(dt, J=4 Hz, J=12.4 Hz, 1H), 1.87 (dt, J=4, J=13.2 Hz,
1H), 1.34 (q, J=13.2 Hz, 1H), 1.24 (q, J=12.0 Hz, 1H),
LRMS m/z calcd for C11H23N4O3, (M+H): 243.2, found
243.2.
22. Molecular modelling was performed using published atom
coordinates of the 30S ribosomal subunit-aminoglycoside