F. Yang et al. / Tetrahedron Letters 43 (2002) 7561–7563
7563
In conclusion, a highly efficient and practical method
was developed for the preparation of (16)-b- -glu-
Takeo, K.; Maki, K.; Wada, Y.; Kitamura, S. Carbohydr.
Res. 1993, 245, 81–93; (e) Zhu, Y.; Kong, F. Carbohydr.
Res. 2001, 332, 1–21; (f) Hinou, H.; Umino, A.; Mat-
suoka, K.; Terunuma, D.; Takahashi, S.; Esumi, Y.;
Kuzuhara, H. Tetrahedron Lett. 1997, 38, 8041–8044.
6. (a) Du, Y.; Yang, F. Chin. Pat. Appl. 01136484x, 2001;
(b) In our manuscript preparation, Dr. Baasov published
a tetra-glucosamine oligosaccharide synthesis: Fridman,
M.; Solomon, D.; Yogev, S.; Baasov, T. Org. Lett. 2002,
4, 281–283.
D
cosamine oligosaccharides. Isopropyl thioglycosides
were shown to be suitable donors in target synthesis
compared to the corresponding trichloroacetimidates.
Acceptors with anomeric acetyl groups, which could
simplify the protection strategy, are compatible to NIS/
TMSOTf promoted coupling reactions. Using this pro-
cedure to build up more complicated glucosamine
oligosaccharides is currently underway in our group.
7. Du, Y.; Pan, Q.; Kong, F. Synlett 1999, 5, 1648–1650.
8. Nakano, T.; Ito, Y.; Ogawa, T. Carbohydr. Res. 1993,
243, 43–69.
Acknowledgements
9. (a) Fukuyama, T.; Laud, A. A.; Hotchkiss, L. M. Tetra-
hedron Lett. 1985, 26, 6291–6294; (b) Tanaka, T.;
Oikawa, Y.; Hamada, T.; Yonemitsu, O. Tetrahedron
Lett. 1986, 27, 3651–3654.
This work was supported by NNSF of China (Projects
39970179, 29972053), RCEES of CAS and Beijing
YFAX Sci-tech Ltd. We thank Professor Zhikui Wu of
Guang-An-Meng Hospital for mice experiments.
10. (a) Selected physical data for 23: [h]2D5 +37 (c 1, CHCl3);
1H NMR (400 MHz, CDCl3): l 0.81 (t, 3 H, J 7.2 Hz,
CH2CH3), 0.85–1.28 (m, 12 H, 6 CH2), 1.770, 1.776,
1.778, 1.788, 1.794, 1.870, 1.936, 1.937, 1.942, 1.945,
1.950, 2.052, 2.164 (13 s, 39 H, COCH3), 3.20 (m, 1 H,
OCHaHb), 3.46 (dd, 1 H, J 10.8, 6.4 Hz), 3.16 (m, 1 H,
OCHaHb), 3.40–3.80 (m, 14 H), 3.90–3.96 (m, 2 H),
4.11–4.24 (m, 6 H), 4.36–4.41 (m, 2 H), 4.70–4.82 (m, 3
H), 4.93 (t, 1 H, J 9.2 Hz), 5.13 (d, 1 H, J 8.4 Hz, H-1I),
5.21 (t, 1 H, J 9.2 Hz), 5.25 (d, 1 H, J 8.4 Hz, H-1II), 5.27
(d, 2 H, J 8.4 Hz, H-1III, H-1IV), 5.33 (d, 1 H, J 8.4 Hz,
H-1V), 5.51 (d, 1 H, J 8.4 Hz, H-1VI), 5.57–5.67 (m, 5 H),
6.07 (dd, 1 H, J 10.8, 9.0 Hz), 7.71–7.92 (m, 24 H, Ph);
13C NMR (100 MHz, CDCl3): l 97.51, 97.56, 97.60 (2C),
97.66, 98.00 (6 C-1). MALDI TOF-MS calcd for
References
1. (a) Ogawa, T.; Yamamoto, H. Carbohydr. Res. 1982, 104,
271–283; (b) Weis, W. I.; Drickamer, K.; Hendrickson,
W. A. Nature 1992, 360, 127–134.
2. (a) Lowman, D.; Ensley, H.; Williams, D. Carbohydr.
Res. 1998, 306, 559–562; (b) Witczak, Z. J. Curr. Med.
Chem. 1995, 1, 392–405.
3. (a) Takahashi, T.; Adachi, M.; Matsuda, A.; Doi, T.
Tetrahedron Lett. 1999, 41, 2599–2603; (b) Amornrut, C.;
Toida, T.; Imanari, T.; Woo, E.; Park, H.; Linhardt, R.
J.; Wu, S. J.; Kim, Y. S. Carbohydr. Res. 1999, 321,
121–127.
C
118H122N6O50: 2422.72 [M]. Found: 2445.6 [M+Na]+,
2461.6 [M+K]+; (b) To the NH3 saturated MeOH (200
mL) was added 23 (1 g). The mixture was stirred at rt for
7 days, then concentrated. The residue was dissolved in
H2O (5 mL) and then purified by charcoal chromatogra-
phy (H2O) to give 24 as a white solid. Selected 13C NMR
(100 MHz, D2O) for 24: 103.05, 103.51, 103.59, 103.63,
103.67, 103.7 (6 C-1). MALDI TOF-MS calcd for
C44H84N6O25: 1096.55 [M]. Found: 1119.2 [M+Na]+.
4. Austin, P. R.; Brine, C. J.; Castle, J. E.; Zikakis, J. P.
Science 1981, 212, 749–753.
5. (a) Randolph, J. T.; McClure, K. F.; Danishefsky, S. J. J.
Am. Chem. Soc. 1995, 117, 5712–5719; (b) Kovac, P.;
Taylor, R. B.; Glaudemans, C. P. J. J. Org. Chem. 1985,
50, 5323–5333; (c) Verduyn, R.; Douwes, M.; van der
Klein, P. A. M.; Mo¨singer, E. M.; van der Marel, G. A.;
van Boom, J. H. Tetrahedron 1993, 49, 7301–7316; (d)