Communication
ChemComm
15 K. Polidano, B. D. W. Allen, J. M. J. Williams and L. C. Morrill, ACS
Catal., 2018, 8, 6440–6445.
16 (a) D. A. Valyaev, G. Lavigne and N. Lugan, Coord. Chem. Rev., 2016,
308, 191–235; (b) F. Kallmeier and R. Kempe, Angew. Chem., Int. Ed.,
2018, 57, 46–60.
17 S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W. Baumann,
R. Ludwig, K. Junge and M. Beller, J. Am. Chem. Soc., 2016, 138,
8809–8814.
18 A. Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y. Ben David,
N. A. Espinosa Jalapa and D. Milstein, J. Am. Chem. Soc., 2016, 138,
4298–4301.
In conclusion, the manganese-catalyzed a-alkylation of ketones
using methanol as a green alkylating reagent was, for the first time,
achieved in the presence of a manganese catalyst based on a
2,6-diaminopyridine scaffold. The defined protocol could be
successfully extended to the even more challenging ester derivatives,
demonstrating further the great potential of manganese catalysis in
the field of (de)-hydrogenation reactions.
¨
We thank Noel Lugan for discussions, and the Centre
´
National de la Recherche Scientifique (CNRS), the Universite
19 (a) S. Elangovan, J. Neumann, J.-B. Sortais, K. Junge, C. Darcel and
M. Beller, Nat. Commun., 2016, 7, 12641; (b) N. Deibl and R. Kempe,
Angew. Chem., Int. Ed., 2017, 56, 1663–1666; (c) F. Kallmeier, B. Dudziec,
T. Irrgang and R. Kempe, Angew. Chem., Int. Ed., 2017, 56, 7261–7265;
Paul Sabatier, the Institut Universitaire de France (IUF) and the
Agence Nationale de la Recherche (ANR Agency, grant JCJC
ANR-15-CE07-0001).
¨
(d) M. Mastalir, M. Glatz, N. Gorgas, B. Stoger, E. Pittenauer, G. Allmaier,
L. F. Veiros and K. Kirchner, Chem. – Eur. J., 2016, 22, 12316–12320;
(e) M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier and K. Kirchner,
˜
´
J. Am. Chem. Soc., 2016, 138, 15543–15546; ( f ) M. Pena-Lopez, P. Piehl,
S. Elangovan, H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2016,
55, 14967–14971; (g) N. V. Kulkarni, W. W. Brennessel and W. D. Jones,
ACS Catal., 2018, 8, 997–1002; (h) U. K. Das, Y. Ben-David, Y. Diskin-
Posner and D. Milstein, Angew. Chem., Int. Ed., 2018, 57, 2179–2182;
(i) M. K. Barman, S. Waiba and B. Maji, Angew. Chem., Int. Ed., 2018, 57,
9126–9130; ( j) D. H. Nguyen, X. Trivelli, F. Capet, J.-F. Paul, F. Dumeignil
and R. M. Gauvin, ACS Catal., 2017, 7, 2022–2032.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 E. J. Barreiro, A. E. Ku¨mmerle and C. A. M. Fraga, Chem. Rev., 2011,
111, 5215–5246.
2 (a) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215–1292;
(b) P. T. Anastas and J. C. Warner, Green Chemistry: Theory and
Practice, Oxford University Press, 2000.
´
´
20 M. Anderez-Fernandez, L. K. Vogt, S. Fischer, W. Zhou, H. Jiao,
M. Garbe, S. Elangovan, K. Junge, H. Junge, R. Ludwig and M. Beller,
Angew. Chem., Int. Ed., 2017, 56, 559–562.
21 S. Chakraborty, U. Gellrich, Y. Diskin-Posner, G. Leitus, L. Avram
and D. Milstein, Angew. Chem., Int. Ed., 2017, 56, 4229–4233.
3 (a) Y. Obora, ACS Catal., 2014, 4, 3972–3981; (b) M. H. S. A. Hamid,
P. A. Slatford and J. M. J. Williams, Adv. Synth. Catal., 2007, 349, 22 M. Mastalir, E. Pittenauer, G. Allmaier and K. Kirchner, J. Am. Chem.
´
1555–1575; (c) G. Guillena, D. J. Ramon and M. Yus, Chem. Rev.,
Soc., 2017, 139, 8812–8815.
2010, 110, 1611–1641; (d) A. Corma, J. Navas and M. J. Sabater, Chem. 23 (a) J. Neumann, S. Elangovan, A. Spannenberg, K. Junge and
Rev., 2018, 118, 1410–1459.
4 (a) G. A. Olah, Angew. Chem., Int. Ed., 2013, 52, 104–107; (b) G. A. Olah,
Angew. Chem., Int. Ed., 2005, 44, 2636–2639.
M. Beller, Chem. – Eur. J., 2017, 23, 5410–5413; (b) A. Bruneau-
Voisine, D. Wang, V. Dorcet, T. Roisnel, C. Darcel and J.-B. Sortais,
J. Catal., 2017, 347, 57–62.
6 (a) C. Chauvier and T. Cantat, ACS Catal., 2017, 7, 2107–2115;
(b) K. Natte, H. Neumann, M. Beller and R. V. Jagadeesh, Angew.
Chem., Int. Ed., 2017, 56, 6384–6394.
7 (a) C. S. Cho, B. T. Kim, T.-J. Kim and S. C. Shim, J. Org. Chem., 2001,
66, 9020–9022; (b) A. R. Sahoo, G. Lalitha, V. Murugesh, C. Bruneau,
G. V. M. Sharma, S. Suresh and M. Achard, J. Org. Chem., 2017, 82,
10727–10731.
8 R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit and N. Tongpenyai,
J. Chem. Soc., Chem. Commun., 1981, 611–612.
9 K. Taguchi, H. Nakagawa, T. Hirabayashi, S. Sakaguchi and Y. Ishii,
J. Am. Chem. Soc., 2004, 126, 72–73.
24 (a) D. Wei, A. Bruneau-Voisine, D. A. Valyaev, N. Lugan and J.-B.
Sortais, Chem. Commun., 2018, 54, 4302–4305; (b) D. Wei, A. Bruneau-
Voisine, T. Chauvin, V. Dorcet, T. Roisnel, D. A. Valyaev, N. Lugan and
J.-B. Sortais, Adv. Synth. Catal., 2018, 360, 676–681; (c) H. Li, D. Wei,
A. Bruneau-Voisine, M. Ducamp, M. Henrion, T. Roisnel, V. Dorcet,
´
C. Darcel, J.-F. Carpentier, J.-F. Soule and J.-B. Sortais, Organometallics,
2018, 37, 1271–1279; (d) D. Wang, A. Bruneau-Voisine and J.-B. Sortais,
Catal. Commun., 2018, 105, 31–36; (e) A. Bruneau-Voisine, D. Wang,
V. Dorcet, T. Roisnel, C. Darcel and J.-B. Sortais, Org. Lett., 2017, 19,
3656–3659; ( f ) J. Zheng, S. Chevance, C. Darcel and J.-B. Sortais, Chem.
Commun., 2013, 49, 10010–10012; (g) J. Zheng, S. Elangovan, D. A.
´
Valyaev, R. Brousses, V. Cesar, J.-B. Sortais, C. Darcel, N. Lugan and
10 P. Piehl, M. Pena-Lopez, A. Frey, H. Neumann and M. Beller, Chem.
Commun., 2017, 53, 3265–3268.
11 (a) L. K. M. Chan, D. L. Poole, D. Shen, M. P. Healy and T. J. Donohoe,
G. Lavigne, Adv. Synth. Catal., 2014, 356, 1093–1097; (h) D. A. Valyaev,
D. Wei, S. Elangovan, M. Cavailles, V. Dorcet, J.-B. Sortais, C. Darcel and
N. Lugan, Organometallics, 2016, 35, 4090–4098.
Angew. Chem., Int. Ed., 2014, 53, 761–765; (b) S. Ogawa and Y. Obora, 25 For the proposed mechanism, see the ESI†.
Chem. Commun., 2014, 50, 2491–2493; (c) X. Quan, S. Kerdphon and 26 In contrast, using n-butanol or benzyl alcohol instead of methanol
P. G. Andersson, Chem. – Eur. J., 2015, 21, 3576–3579; (d) T. T. Dang and
led to 1-phenylpropan-1-ol as the main product.
A. M. Seayad, Adv. Synth. Catal., 2016, 358, 3373–3380; (e) S. M. A. H. 27 T. W. Bell and S. D. Rothenberger, Tetrahedron Lett., 1987, 28, 4817–4820.
´
Siddiki, A. S. Touchy, M. A. R. Jamil, T. Toyao and K.-i. Shimizu, ACS 28 A. Fu¨rstner and B. Bogdanovic, Angew. Chem., Int. Ed. Engl., 1996, 35,
¨
Catal., 2018, 8, 3091–3103; ( f ) R. L. Wingad, E. J. E. Bergstrom,
2442–2469.
M. Everett, K. J. Pellow and D. F. Wass, Chem. Commun., 2016, 52, 29 Under the same conditions, 2,20-methyleneditetralone c3 was
5202–5204; (g) K. Chakrabarti, M. Maji, D. Panja, B. Paul, S. Shee,
G. K. Das and S. Kundu, Org. Lett., 2017, 19, 4750–4753.
obtained starting from a-tetralone in 38% isolated yield, see the
ESI†.
12 (a) W.-H. Lin and H.-F. Chang, Catal. Today, 2004, 97, 181–188; 30 A. Bruneau-Voisine, D. Wang, T. Roisnel, C. Darcel and J.-B. Sortais,
(b) M. Qian, M. A. Liauw and G. Emig, Appl. Catal., A, 2003, 238,
211–222.
13 R. M. Bullock, Science, 2013, 342, 1054–1055.
14 Z. Liu, Z. Yang, X. Yu, H. Zhang, B. Yu, Y. Zhao and Z. Liu, Org. Lett.,
2017, 19, 5228–5231.
Catal. Commun., 2017, 92, 1–4.
31 In the case of amides: for acetanilide, only N-methylaniline (ca. 25%)
resulting from trans-esterification/methylation was detected. In
contrast, the lactam 2-oxindole a28 was methylated in good isolated
yield (b28, 71%). See the ESI†.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 314--317 | 317