COMMUNICATIONS
Me
OPMB
H
Me
42
42
Me
H
OPMB OTBS
H
OPMB OTBS
H
O
O
O
O
O
R
11
B
c
a,b
16
O
O
B
16
11
B
C
1
11
1
1
A
O
A
O
87%
70%
A
O
O
16
NHPh
H
NHPh
H
NHPh
H
OH
OH
OH
OBn
OH
OTBS
16a
18 (d.r. >95:5)
20a, R = CH2OH
20b, R = CH3
d,e
OPMB
H
54%
H
OPMB
Me
Me
77%
f,g
OPMB
H
H
H
Me
Me
Me
H
O
O
O
O
B
C
OTES
B
C
OH
11
Me
j,k,l
80%
OH
h,i
78%
OBn
1
11
O
O
1
B
A
O
O
C
O
A
O
O
16
16
11
1
NHPh
H
NHPh
H
A
O
OTBODPS
16
OTBODPS
NHPh
H
OTBODPS OH
O
23 (d.r. = 95:5)
22 (d.r. >95:5)
21
TBODPS = Si(OtBu)Ph2
19
19
Scheme 4. Completion of C1 C19 ABC fragment. a) LiDBB, THF, À788C; 81%; b) [VO(acac)2], TBHP, PhH; 99%; c) PPTS, CH2Cl2; 87%; d) PhOC(S)Cl,
DMAP, CH2Cl2, À108C; 75%; e) Bu3SnH, AIBN, xylenes, 1608C; 72%; f) TBODPSCl, DMAP, Et3N, DMF; 90%; g) CSA, CH2Cl2/MeOH (1:1), À208C;
85%; h) SO3¥Py, Et3N, CH2Cl2/DMSO (1:1), À108C; i) 2-(benzyloxymethyl) allyltributylstannane, BF3¥OEt2, CH2Cl2, À788C; 78% (two steps); j) TESCl, Im,
CH2Cl2; 92%; k) LiDBB, THF, À788C; 87%; l) Ti(OtBu)4, (l)-(þ)-DET, TBHP, 3 ä MS, CH2Cl2, À308C; 99%. See reference [7] for abbreviations.
Chem. Soc. 1999, 121, 7540 7552; b) D. A. Evans, D. M. Fitch, T. E.
Smith, V. J. Cee, J. Am. Chem. Soc. 2000, 122, 10033 10046.
[6] D. A. Evans, D. W. C. MacMillan, K. R. Campos, J. Am. Chem. Soc.
1997, 119, 10859 10860.
[7] Abbreviations: OTf ¼ trifluoromethanesulfonyl; Bn ¼ benzyl, TBS ¼
deoxygenation under standard Barton conditions completed
the synthesis of the C-ring tetrahydrofuran 20b.[22,23]
The hydroxy group at C11 was protected as a tert-
butoxydiphenylsilyl (TBODPS) ether.[24] Selective deprotec-
tion of the primary TBS ether (CSA, CH2Cl2/MeOH),
oxidation of the resulting alcohol 21 (SO3¥Py, Et3N, CH2Cl2/
DMSO, À108C)[18] to the unstable a,b-bisalkoxy aldehyde,
followed by Felkin controlled allylation with 2-(benzyloxy-
methyl)allyltributylstannane[25] (BF3¥OEt2, CH2Cl2, À788C,
78% over two steps, d.r. 95:5) provided homoallyl alcohol 22,
the complete carbon chain of the C1 C19 fragment. Protec-
tion of the hydroxy group at C16 (TESCl, Im, CH2Cl2, 92%),
benzyl deprotection[20] (LiDBB, THF, À788C, 87%), and a
stoichiometric Sharpless asymmetric epoxidation[26] ([Ti(Ot-
Bu)4], (l)-(þ)-DET, TBHP, 3 ä MS, CH2Cl2, À308C, 99%,
d.r. 95:5) afforded the desired ABC epoxide 23 with excellent
selectivity.
tert-butyldimethylsilyl; d.r. ¼ diastereomeric ratio; TES ¼ triethylsil-
yl; lut. ¼ 2,6-lutidine; PMB ¼ 4-methoxybenzyl; DMSO ¼ dimethyl
sulfoxide; LiDBB ¼ lithium di-tert-butyl biphenylide; DMAP ¼ 4-
(N,N-dimethylamino)pyridine; AIBN ¼ 2,2’-azobisisobutyronitrile;
TBODPS ¼ tert-butoxydiphenylsilyl; Im ¼ imidazole; PPTS ¼ pyridi-
nium para-toluenesulfonate; DMF ¼ dimethylformamide; CSA ¼
camphorsulfonic acid; TBHP ¼ tert-butyl hydroperoxide; DET¼ di-
ethyl tartrate; MS ¼ molecular sieves.
[8] D. A. Evans, K. A. Scheidt, J. N. Johnston, M. C. Willis, J. Am. Chem.
Soc. 2001, 123, 4480 4491.
[9] D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127
2129.
[10] a) J. Godoy, S. V. Ley, B. Lygo, J. Chem. Soc. Chem. Commun. 1984,
1381 1382; b) D. Culshaw, P. Grice, S. V. Ley, G. A. Strange,
Tetrahedron Lett. 1985, 26, 5837 5840.
[11] T. Fukuyama, S.-L. Lin, L. Li, J. Am. Chem. Soc. 1990, 112, 7050
7051; See also: D. A. Evans, B. W. Trotter, P. J. Coleman, B. Cote, L.
Carlos Dias, H. A. Rajapakse, A. N. Tyler, Tetrahedron 1999, 55,
8671 8726.
[12] The typical conditions of adding iPrMgCl to a cooled solution of ester
and MeNHOMe¥HCl resulted in the formation of significant amounts
of isopropyl ketone. Preforming the magnesium amide of the Weinreb
salt, thus ensuring that all the Grignard reagent was consumed prior to
ester addition, was critical for the success of this reaction. For the
original procedure, see: J. M. Williams, R. B. Jobson, N. Yasuda, G.
Marchesini, U.-H. Dolling, E. J. Grabowski, Tetrahedron Lett. 1995,
36, 5461 5464.
The preceding discussion describes the stereoselective
synthesis of the C1 C19 ABC epoxide fragment of the
pectenotoxin skeleton. The following communication de-
scribes the syntheses of the C20 C30 E-ring and C31 C40 FG
fragments, and the fragment assemblage to pectenotoxin-4.
Received: September 18, 2002 [Z50190]
[13] M. T. Reetz, K. Kesseler, J. Org. Chem. 1985, 50, 5434 5436.
[14] a) H. P. Wessel, T. Iversen, D. R. Bundle, J. Chem. Soc. Perkin Trans. 1
1985, 2247 2250; b) N. Nakajima, K. Horita, R. Abe, O. Yonemitsu,
Tetrahedron Lett. 1988, 29, 4139 4142.
[15] A.-M. Faucher, C. Brochu, S. R. Landry, I. Duchesne, S. Hantos, A.
Roy, A. Myles, C. Legault, Tetrahedron Lett. 1998, 39, 8425
8428.
[16] N. T. Ahn, O. Einstein, Nouv. J. Chim. 1977, 1, 61 70.
[17] Attempts to access aldehyde 17 directly by half reduction with
electrophilic reagents such as diisobutylaluminum hydride resulted in
N-phenylamide decomposition. This was the only reagent incompat-
ibility observed throughout the synthesis.
[1] a) T. Yasumoto, M. Murata, Y. Oshima, M. Sano, G. K. Matsumoto, J.
Clardy, Tetrahedron 1985, 41, 1019 1025; b) K. Sasaki, J. L. C.
Wright, T. Yasumoto, J. Org. Chem. 1998, 63, 2475 2480; c) J. H.
Jung, C. J. Sim, C.-O. Lee, J. Nat. Prod. 1995, 58, 1722 1726; d) M.
Daiguji, M. Satake, K. J. James, A. Bishop, L. Mackenzie, H. Naoki, T.
Yasumoto, Chem. Lett. 1998, 653 654.
[2] a) S. Amano, K. Fujiwara, A. Murai, Synlett 1997, 1300 1302; b) D.
Awakura, K. Fujiwara, A. Murai, Synlett 2000, 1733 1736; c) G. C.
Micalizio, W. R. Roush, Org. Lett. 2001, 3, 1949 1952; d) L. A.
Paquette, X. Peng, D. Bondar, Org. Lett. 2002, 4, 937 940.
[3] D. A. Evans, H. A. Rajapakse, A. Chiu, D. Stenkamp, Angew. Chem.
2002, 114, 4755; Angew. Chem. Int. Ed. 2002, 41, 4573.
[18] J. R. Parikh, W. von E. Doering, J. Am. Chem. Soc. 1967, 89, 5505
5507.
[19] The Grignard reagent was prepared by adding a Et2O/PhH solution of
MgBr2 to vinyllithium 14b. See: M. Nakatsuka, J. A. Ragan, T.
Sammakia, D. B. Smith, D. E. Uehling, S. L. Schreiber, J. Am. Chem.
Soc. 1990, 112, 5583 5601.
[4] For similar bond constructions in a complex setting see: a) D. A.
Evans, S. L. Bender, J. Morris, J. Am. Chem. Soc. 1988, 110, 2506
2526; b) D. A. Evans, R. P. Polniaszek, K. M. DeVries, D. E. Guinn,
D. J. Mathre, J. Am. Chem. Soc. 1991, 113, 7613 7630.
[5] For the use of N-phenylamides as carboxyl surrogates see: a) D. A.
Evans, P. H. Carter, E. M. Carreira, J. A. Prunet, M. Lautens, J. Am.
4572
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4123-4572 $ 20.00+.50/0
Angew. Chem. Int. Ed. 2002, 41, No. 23