Scheme 1a
Table 1. Relative Efficiency of Various Methods for the
On-Bead Aliphatic Homocoupling of E2 to F2
E2/F 2
(conv, %)
entry
acetylenic homocoupling conditions
1
2
3
4
5
6
7
8
9
PdII/Pd0, CuI, oxidants, bases, solvents, rt
Cu(OAc)2, pyridine (DBU), rt to 80 °C
CuCl or CuI, O2, TMEDA or dipyridyl
CuCl2, CuI, TMEDA, DBU, CH2Cl2, rt
CuCl2, CuI, AgOAc, TMEDA, DBU CH2Cl2, rt
CuCl2, CuI, AgOTf, TMEDA, DBU CH2Cl2, rt
CuCl2, CuI, AgOTs, TMEDA, DBu CH2Cl2, rt
Cu Cl2, AgOTs, TMEDA, DBU, CH2Cl2, r t
Cu(OTf)2, TMEDA, DBU, CH2Cl2, rt
>60:40 (<10)
>50:50 (<25)
>70:30 (<20)
50:50 (<20)
50:50 (45)
40:60 (55)
5:85 (85)
5:85 (85)
100:0 (0)
10
11
12
Cu(OTs)2, TMEDA, DBU, CH2Cl2, rt
Cu(OTs)2, AgOTs, TMEDA, DBU CH2Cl2, rt
AgOTs, TMEDA, DBU, CH2Cl2, rt
100:0 (0)
100:0 (0)
100:0 (0)
neither the Pd-catalyzed methods1h,i,2a (entry 1 in Table 1)
nor the Eglinton-Galbraith method1e-g and Glaser-Hay
coupling1d as well as their many variants (entries 2-4 in
Table 1) could provide any results with acceptable purities/
yields. Prolonging the reaction time only resulted in even
poorer purities and yields. This drawback of the on-bead
aliphatic acetylenic homocoupling in comparison with its
aromatic counterpart2a may derive from the aliphatic terminal
alkyne’s lower acidity, but higher instability of its diyne
product toward transition metals.6 Furthermore, the inef-
ficiency was “amplified” by the on-bead reaction which
usually is more sluggish and much slower than the solution-
phase reaction.7
a Conditions: (1) CO balloon, CF3CH2OH, Pd(PPh3)2Cl2-dppp
(1.2 equiv), CsOAc, DMF, 45 °C, 24 h; (2) Superbase D, alkynol
Cj, THF, rt, 48 h; (3) CuCl2 (1.1 equiv), AgOTs (1.1 equiv),
TMEDA (N,N,N,N-tetramethylethylenediamine), DBU, CH2Cl2, rt,
17 h; (4) HF/Py 5% in THF, rt, 1 h; TMSOMe, 0.5 h.
AgI could activate the terminal carbon-hydrogen bond
by forming a π-complex with the triple bond.8a However,
there is no report regarding the role of AgI in facilitating
acetylene homocoupling. We screened three AgI salts and
observed a clear activation tendency in the following order:
AgOAc < AgOTf < AgOTs (entries 5-7 in Table 1). In
the case of AgOTs, the on-bead homocoupling preceded
function as a modulator of cellular processes3b and its
potential contribution to protein interaction by providing an
extra binding domain.3c Unfortunately, none of the known
methods1 being tested are applicable for the on-bead aliphatic
acetylenic homocoupling. This challenge had not been
realized until we developed a unique AgOTs-CuCl2-
TMEDA combination that proved to be a superior system
in both solution and solid phase, thereby providing the
possibility for the acetylenic homocoupling on solid support.
Considering the frequent occurrence of di- and oligoacety-
lene moieties,4a,b as well as benzofuran skeleton4c,d in natural
products which possess intriguing biological activities,4c,d we
became increasingly interested in constructing a dimeric
benzofuran scaffold by exploring the acetylenic homocou-
pling on solid support for future combinatorial library
construction.
As illustrated in Scheme 1, the key intermediates Ei were
generated via a PdII-mediated cascade carbonylative
annulation2b of Ai to give activated esters Bi, followed by a
Verkade superbase D5 catalyzed transesterification with
various alkynols Cj.
The subsequent on-bead acetylenic homocoupling (Ei to
Fi) encountered unexpected difficulties. During the model
study (Cj ) 4-pentyn-1-ol, Ri ) tolyl, i ) 2, Scheme 1),
1
smoothly in a high conversion (85% based on H NMR
analysis, entry 7 in Table 1). The prominent activation effect
of the AgOTs may come from the much weaker coordinating
nature of OTs- than that of AcO- and TfO-, which makes
the cationic AgI more “naked”8b and facilitates its association
(4) (a) Hansen, L.; Boll, P. M. Phytochemistry 1986, 25, 285-293. (b)
Lu, W.; Haji, G. Z.; Aisa, A.; Cai, J. Tetrahedron Lett. 1998, 39, 9521-
9522. (c) Engler, T. A.; LaTessa, K. O.; Lyengar, R.; Chai, W.; Agrios, K.
Bioorg. Med. Chem. 1996, 4, 1755-1769. (d) Pieters, L.; Van Dyck, S.;
Gao, M.; Bai, R.; Hamel, E.; Vlietinck, A.; Lemiere, G. J. Med. Chem.
1999, 42, 5473-5481. (e) Donnelly, D. M. X.; Meegan, M. J. In
ComprehensiVe Heterocyclic Chemistry; Katritzky, A. R., Ed.; Pergamon
Press: New York, 1984; Vol. 4. (f) Erber, S.; Ringshandl, R.; von Angerer,
E. Anti-Cancer Drug Des. 1991, 6, 417. (g) Malamas, M. S.; Sredy, J.;
Moxham, C.; Katz, A.; Xu, W. X.; McDevitt, R.; Adebayo, F. O.; Sawicki,
D. R.; Seestaller, L.; Sullivan, D.; Taylor, J. R. J. Med. Chem. 2000, 43,
1293. (h) Watanabe, Y.; Yoshiwara, H.; Kanao, M. J. Heterocycl. Chem.
1993, 30, 445. (i) McCallion, G. D. Curr. Org. Chem. 1999, 3, 67. (j) Yang,
Z.; Liu, H.-B.; Lee, C.-M.; Chang, H.-M.; Wong, H. N. C. J. Org. Chem.
1992, 57, 7248.
(5) Ilankumaran, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 3086-3089.
(6) Rossi, R.; Carpita, A.; Bigelli, C. Tetrahedron Lett. 1985, 26, 523-
526.
(7) (a) Hudson, D. J. Comb. Chem. 1999, 1, 333-360; 403-456. (b)
Vaino, A. R.; Janda, K. D. J. Comb. Chem. 2000, 2, 579-596.
(8) (a) Ginnebaugh, J. P.; Maki, J. W.; Lewandos, G. S. J. Organomet
Chem. 1980, 190, 403-416. (b) Tsuji, J. Acc. Chem. Res. 1973, 6, 8-15.
(c) Jacobs, L. A.; Van Vuuren, C. P. J. Thermochim. Acta 1988, 127, 399-
402.
(3) (a) Clemons, P. A. Curr. Opin. Chem. Biol. 1999, 3, 112-115. (b)
Diver, S. T.; Schreiber, S. L. J. Am. Chem. Soc. 1997, 119, 5106-5109
and references therein. (c) Nicolaou, K. C.; Hughes, R.; Cho, S.-Y.;
Winssinger, N.; Smethurst, C.; Labischinski, H.; Endermann, R. Angew.
Chem., Int. Ed. 2000, 39, 3823-3828 and references therein.
910
Org. Lett., Vol. 5, No. 6, 2003