6 (a) K. Burgess and M. J. Ohlmeyer, J. Org. Chem., 1991, 56, 1027;
(b) J. C. A. Hunt, P. Laurent and C. J. Moody, Chem. Commun.,
2000, 18, 1771; (c) J. A. Marshall and A. W. Garafalo, J. Org. Chem.,
1993, 58, 3675; (d ) R. Jumnah, J. M. J. Williams and A. C. Williams,
Tetrahedron Lett., 1993, 34, 6619.
7 (a) B. M. Trost and R. C. Bunt, J. Am. Chem. Soc., 1994, 116, 4089;
(b) F. Effenberger, B. Gutterer and J. Syed, Tetrahedron: Asymmetry,
1995, 6, 2933; (c) P. Merino, S. Anoro, E. Castillo, F. Merchan and
T. Tejero, Tetrahedron: Asymmetry, 1996, 7, 1887; (d ) T. Hayashi
and M. Ishigedani, Tetrahedron, 2001, 57, 2589; (e) R. B. Grossman,
W. M. Davis and S. L. Buchwald, J. Am. Chem. Soc., 1991, 113,
2321.
(Z )-Benzaldehyde O-(4-methoxy-4-phenylbut-2-enyl)oxime
33. Lindlar’s catalyst (200 mg) was added to 32 (912 mg, mmol)
in methanol (10 mL), and stirred under 4 atm H2 for 4 days. The
mixture was then filtered through Celite, and concentrated
in vacuo before purification by column chromatography {10%
Et2O–petrol (40 : 60)} to give 33 (803 mg, 66%) as a colourless
oil. νmax/cmϪ1 (film) 2932 (s, C–H), 1955 (w), 1882 (w), 1812 (w),
1723 (m), 1602 (m); δH (400 MHz, CDCl3) 3.38 (3H, s, OCH3),
4.84 (1H, ddd, J 13.0, 6.1, 1.4, OCHH), 4.94 (1H, ddd, J 13.0,
6.8, 1.5, OCHH), 5.09 (1H, d, J 9.0, CHOCH3), 5.78 (1H, app
ddt, J 11.3, 9.0, 1.3, CH CH᎐CH), 5.87–5.93 (1H, m, CH -
᎐
2
2
8 S. D. Bull, S. G. Davies, S. Jones, J. V. A. Ouzman, A. J. Price and
D. J. Watkin, Chem. Commun., 1999, 2079.
CH᎐CH), 7.28–7.41 (8H, m, aromatic CH), 7.56–7.60 (2H, m,
᎐
9 As shown by 1H NMR spectroscopic analysis of the crude reaction
mixture.
aromatic CH), 8.11 (1H, s, CH᎐N); δ (50 MHz, CDCl ) 56.8
᎐
C
3
(OCH3), 70.4 (CH2), 79.5 (PhCHOCH3), 127.1, 127.6, 128.2,
128.2, 129.0, 129.2, 130.4 (aromatic CH and C᎐C), 132.6 (ipso-
10 As supplied by the Aldrich Chemical Company Ltd.
11 The assignment of relative configuration to the commercially
available (2SR,3RS )-13 and (2RS,3RS )-14 diastereoisomers
᎐
C), 134.5 (C᎐C), 141.6 (ipso-C), 149.5 (PhC᎐N); m/z (APCI)
᎐
᎐
250 (MHϩ Ϫ MeOH, 10%), 147 (PhCHCH᎐CHCH OHϩ, 5%),
1
᎐
2
was taken with consideration of the H NMR data available from
129 (15%), 122 (PhCH᎐NHOHϩ, 15%), 104 (100%). Calculated
the literature; see Y. Kataoka, Y. Seto, M. Yamamoto, T. Yamada,
S. Kuwata and H. Watanabe, Bull. Chem. Soc. Jpn., 1976, 49, 1081.
12 Using the protocol developed previously for aldehyde substrates
which are sensitive to racemisation/epimerisation; see J. R. Luly,
J. F. Dellaria, J. J. Plattner, J. L. Soderquist and N. Yi, J. Org. Chem.,
1987, 52, 1487.
᎐
for C18H19NO2: C 76.8, H 6.8, N 5.0. Found: C 76.5, H 6.5,
N 4.8%.
(Z )-N-Benzyl-O-(4-methoxy-4-phenylbut-2-enyl)hydroxyl-
amine 34. Borane–pyridine complex (0.76 mL) was added to 33
(304 mg, 1.08 mmol) in EtOH (20 mL) at 0 ЊC, followed by the
dropwise addition of 10% EtOH–HCl (30 mL) over 5 minutes
before being allowed to warm to rt and stirred for a further
18 h. The reaction mixture was then basified with saturated
aqueous Na2CO3, extracted with CH2Cl2 (3 × 40 mL), dried (Mg-
SO4), and concentrated in vacuo before purification by column
chromatography {10% Et2O–petrol (40 : 60)} to give 34 (221
mg, 72%) as pale yellow oil. νmax/cmϪ1 (film) 3260 (m), 2928 (s),
1953 (w), 1861 (w), 1811 (w), 1602 (m); δH (400 MHz, CDCl3)
3.29 (3H, s, OCH3), 4.08 (2H, s, PhCH2), 4.29 (1H, dd, J 12.7,
4.6, OCHH), 4.39 (1H, dd, J 12.7, 6.0, OCHH), 4.93 (1H,
13 (a) The diastereoselectivity observed upon addition of organo-
metallic reagents to imines has found wide application in synthesis;
for
a review see D. Enders and U. Reinhold, Tetrahedron:
Asymmetry, 1997, 8, 1895; (b) For related cases of additions of
organometallic reagents to (a) a chiral α-aldoxime acetal see
H. Fujioka, M. Masahiro, Y. Okaichi, T. Yoshida, H. Annoura,
Y. Kita and Y. Tamura, Chem. Pharm. Bull., 1989, 37, 602; (c) an
alkoxymethyl oxime ether see Y. Ukaji, K. Kume, T. Watai and
T. Fujisawa, Chem. Lett., 1991, 173; (d ) N-alkylketimines and 1,3-
oxazolidines see A. G. Steinig and D. M. Spero, J. Org. Chem., 1999,
64, 2406; (e) chiral 1,2-bisimines see S. Roland and P. Mangeney,
Eur. J. Org. Chem., 2000, 1373.
14 J. Mulzer, M. Kappert, G. Huttner and I. Jibril, Angew. Chem., Int.
Ed. Engl., 1984, 23, 704.
d, J 7.8, CHOCH ), 5.67–5.77 (2H, m, CH᎐CH), 7.25–7.38
᎐
3
15 (a) H. Matsunaga, T. Sakamaki, H. Nagaoka and Y. Yamada,
Tetrahedron Lett., 1983, 24, 3009; (b) N. Asao, T. Shimada,
N. Tsukada and Y. Yamamoto, Tetrahedron Lett., 1994, 35, 8425;
(c) U. A. Hausermann, A. Linden, J. Song and M. Hesse, Helv.
Chim. Acta, 1996, 23, 704; (d ) For a recent addition of a
hydroxylamine see A. G. Moglioni, E. Muray, J. A. Castillo,
Á. Álvarez-Larena, G. Y. Moltrasio, V. Branchadell and R. M.
Otuño, J. Org. Chem., 2002, 67, 2402.
16 (a) Y. Chounan, Y. Ono, S. Nishii, H. Kitahara, S. Ito and Y.
Yamamoto, Tetrahedron, 2000, 56, 2821; (b) Y. Yamamoto, S. Nishii
and T. Ibuka, Chem. Commun., 1987, 1572; (c) Y. Yamamoto,
Y. Chounan, S. Nishii, T. Ibuka and H. Kitahara, J. Am. Chem. Soc.,
1992, 114, 7652; (d ) A. Stoncius, C. A. Mast and N. Sewald,
Tetrahedron: Asymmetry, 2000, 11, 3849.
17 (a) N. Asao, T. Shimada, T. Sudo, N. Tsukada, K. Yazawa,
Y. S. Gyoung, T. Uyehara and Y. Yamamoto, J. Org. Chem., 1997,
62, 6274; (b) N. Sewald, K. D. Hiller, M. Koerner and M. Findeisen,
J. Org. Chem., 1998, 63, 7263.
18 K. N. Houk, M. N. Paddon-Row, N. G. Rondan, Y.-D. Wu,
F. K. Brown, D. C. Spellmeyer, J. T. Metz, Y. Li and
R. J. Loncharich, Science, 1986, 231, 1108.
(10H, m, aromatic CH); δC (50 MHz, CDCl3) 56.2 (OCH3),
56.6 (PhCH2), 69.8 (OCH2), 78.9 (PhCH), 126.6, 127.5,
127.6, 128.0, 128.5, 128.6, 129.0 (aromatic CH and C᎐C), 133.9
᎐
(C᎐C), 137.6, 141.3 (ipso-C); m/z (CI) 284 (MHϩ, 15%), 252
᎐
(MHϩ Ϫ MeOH, 100%), 222 (10%), 161 (15%), 147 (25%), 130
(20%), 105 (25%), 92 (20%). Calculated for C18H21NO2: C 76.3,
H 7.5, N 4.9. Found: C 76.4, H 7.2, N 4.9%.
Acknowledgements
The authors wish to acknowledge the EPSRC for a studentship
and the SCI for a Messel Scholarship (T. G. R. S) and New
College, Oxford for a Junior Research Fellowship (A. D. S).
References and notes
1 I. Coldham in Comprehensive Functional Group Transformations,
A. R. Katritzky, O. Meth-Cohn and C. W. Rees, Pergamon Press,
Oxford, 1995, Vol. 1, p. 404.
2 (a) R. W. Hoffmann, Angew. Chem., 1979, 18, 563; (b) D. Enders and
H. Kempen, Synlett, 1994, 969; (c) M. T. Reetz, N. Griebenow and
R. Goddard, Chem. Commun., 1995, 1605; (d ) J. C. Anderson and
A. Flaherty, J. Chem. Soc., Perkin Trans. 1, 2001, 267; (e) J. Mulzer
and D. Riether, Org. Lett., 2000, 2, 3139; ( f ) D. Enders, M. Bartsch
and J. Runsink, Synthesis, 1999, 243.
3 (a) For examples of the synthetic utility of the [2,3]-Wittig
rearrangement see: T. Nakai and K. Mikami, Chem. Rev., 1986,
86, 885; (b) T. Nakai and K. Mikami, Org. React., 1994, 46, 105;
(c) J. A. Marshall in C–C σ Bond Formation, ed. G. Pattenden,
vol. 3 of Comprehensive Organic Synthesis, eds. B. M. Trost and
I. Fleming, Pergamon Press, 1990, 975.
4 (a) S. G. Davies, S. Jones, M. A. Sanz, F. C. Teixeira and J. F. Fox,
Chem. Commun., 1998, 2235; (b) S. G. Davies, J. F. Fox, S. Jones, A.
J. Price, M. A. Sanz, T. G. R. Sellers, A. D. Smith and F. C. Teixeira,
J. Chem. Soc., Perkin Trans. 1, 2002, 1757.
19 (a) For other examples where the diastereoselectivity of the [2,3]-
Wittig rearrangement has been rationalised in a similar manner see
R. Brückner, Chem. Ber., 1989, 122, 193; (b) R. Brückner and
H. Priepke, Angew. Chem., Int. Ed. Engl., 1988, 27, 278; (c) E. Nakai
and T. Nakai, Tetrahedron Lett., 1988, 29, 4587; (d ) K. Mikami and
T. Nakai, Synthesis, 1991, 594; (e) H. Priepke and R. Brückner,
Chem. Ber., 1990, 123, 153.
20 (a) The need for a metal counter-ion in the [2,3]-Wittig
rearrangement has been the cause of much debate. Theoretical
calculations have shown that the preferred transition structure of
the Wittig rearrangement required the lithium cation; see : Y.-D. Wu,
K. N. Houk and J. A. Marshall, J. Org. Chem., 1990, 1421;
(b) However, in some cases E/Z and anti/syn ratios of products in the
Wittig rearrangement have been shown to be independent of
the metal counterion; see B. Kruse and R. Brückner, Tetrahedron
Lett., 1990, 31, 4425.
21 For an example where the diastereoselectivity observed for a [2,3]-
Wittig rearrangement has been rationalised via a chelated transition
state see S. W. Scheuplein, A. Kusche, R. Brückner and K. Harms,
Chem. Ber., 1990, 123, 917.
5 (a) Z. Zhang and R. Scheffold, Helv. Chim. Acta, 1993, 76, 2602;
(b) R. B. Cheikh, R. Chaabouni, A. Laurent, P. Mijon and A. Nafti,
Synthesis, 1983, 685.
2150
J. Chem. Soc., Perkin Trans. 1, 2002, 2141–2150