C O M M U N I C A T I O N S
chemistry of 3-2,3-d2-6-COCD3 formed in the cyclization of
1-1,1,1,5,5-d5 (eq 4), we presume that intermediate VI is also stable
toward olefin displacement (Scheme 2). The failure to form
detectable amounts of 3-3,4-d2 in the cyclization of 1-8,8-d2 (eq 6)
precludes protonolysis from the palladium â-diketonate complex
VIII, but does not rule out reversible formation of VIII (Scheme
2).
In summary, we have presented a deuterium labeling study that
provides insight into the mechanism of the palladium-catalyzed
intramolecular hydroalkylation of 7-octene-2,4-dione (1). These
experiments are in accord with a mechanism involving attack of
the enol carbon atom on the palladium-complexed olefin of III
followed by palladium migration and protonolysis from the pal-
ladium enolate complex VII (Scheme 2). Further studies in this
area will be directed toward elucidating the structure of palladium
enolate complex VII and toward understanding the potential role
of â-diketonate complex VIII in palladium-catalyzed hydro-
alkylation.
Acknowledgment. R.W. thanks the Camille and Henry Dreyfus
Foundation, the Alfred P. Sloan Foundation, DuPont, and Glaxo-
SmithKline for financial assistance.
Supporting Information Available: Experimental procedures,
spectroscopic data, and copies of spectra for deuterated isotopomers
of 1, 3, and 4 (PDF). This material is available free of charge via the
Conversion of 1-1,1,1,5,5-d5 and 1-6,6-d2 to 3-2,3-d2-6-COCD3
and trans-3-4,5-d2, respectively (eqs 4 and 5), is consistent with
isomerization of II to the palladium enolate complex VII via
successive â-hydride elimination/addition (Scheme 2).13 Isomer-
ization of II to VII prior to protonolysis is not surprising given the
high reactivity of palladium(II) alkyl complexes toward â-hydride
elimination/addition.14 The stereoselective conversion of 1-6,6-d2
to trans-3-4,5-d2 precludes reversible olefin displacement from
intermediate IV (Scheme 2) and also establishes that the stereo-
chemistry generated via initial cyclization of (E)- and (Z)-1-7,8-d2
is retained upon subsequent conversion to cis- and trans-3-3,4-d2,
respectively. Although we were unable to determine the stereo-
References
(1) Jung, M. E. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Semmelhack, M. F., Eds.; Pergamon Press: Oxford, 1991; Vol. 4,
Chapter 1.1, pp 1-67.
(2) (a) Pei, T.; Widenhoefer, R. A. J. Am. Chem. Soc. 2001, 123, 11290. (b)
Pei, T.; Widenhoefer, R. A. Chem. Commun. 2002, 650.
(3) For the oxidative alkylation of 4-pentenyl â-dicarbonyl compounds see:
Pei, T.; Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2003, 125,
648.
(4) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic
Molecules; University Science Books: Mill Valley, CA, 1999; Chapter
7.2, pp 188-204.
(5) (a) Ba¨ckvall, J. E.; Åkermark, B.; Ljunggren, S. O. J. Am. Chem. Soc.
1979, 101, 2411. (b) Stille, J. K.; James, D. E.; Hines, L. F. J. Am. Chem.
Soc. 1973, 95, 5062. (c) Francis, J. W.; Henry, P. M. Organometallics
1991, 10, 3498. (d) Stille, J. K.; Divakaruni, R. J. Am. Chem. Soc. 1978,
100, 1303.
Scheme 2
(6) (a) Åkermark, B.; Ba¨ckvall, J. E.; Siirala-Hansen, K.; Sjo¨berg, K.;
Zetterberg, K. Tetrahedron Lett. 1974, 1363. (b) Åkermark, B.; Ba¨ckvall,
J. E. Tetrahedron Lett. 1975, 819.
(7) (a) Murahashi, S.-I.; Yamamura, M.; Mita, N. J. Org. Chem. 1977, 42,
2870. (b) Kurosawa, H.; Asada, N. Tetrahedron Lett. 1979, 255.
(8) (a) Merrifield, J. H.; Ferna´ndez, J. M.; Buhro, W. E.; Gladysz, J. A. Inorg.
Chem. 1984, 23, 4022. (b) De Luca, N.; Wojcicki, A. J. Organomet. Chem.
1980, 193, 359.
(9) Alkenyl diketones (E)-1-7,8-d2 and (Z)-1-7,8-d2 contained ∼15% and
∼25%, respectively, of the isotopomer 1-7,8,8-d3; the presence of 1-7,8,8-
d3 did not complicate stereochemical analysis of 4-4,5-d2.
(10) (a) Gilchrist, J. H.; Bercaw, J. E. J. Am. Chem. Soc. 1996, 118, 12021.
(b) Ridgway, B. H.; Woerpel, K. A. J. Org. Chem. 1998, 63, 458.
(11) Padwa, A.; Ishida, M.; Muller, C. L.; Murphree, S. S. J. Org. Chem. 1992,
57, 1170.
(12) The C(2) deuteron was lost during chromatography.
(13) Oxygen-bound and η3-oxallyl tautomers are also plausible structures for
VII, and each of these tautomeric forms has been documented for
palladium: Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123,
5816 and ref 10 therein.
(14) (a) Goj, L. A.; Widenhoefer, R. A. J. Am. Chem. Soc. 2001, 123, 11133.
(b) Tempel, D. J.; Johnson, L. K.; Huff, R. L.; White, P. S.; Brookhart,
M. J. Am. Chem. Soc. 2000, 122, 6686.
JA0293002
9
J. AM. CHEM. SOC. VOL. 125, NO. 8, 2003 2057