COMMUNICATIONS
Table 1. Generation of 5-substituted dibenzofurans and related molecules.
Tetrahedron Lett. 1976, 42, 3801; c) T. M. Konjin, J. G. C. van de Meene,
J. T. Bonner, D. S. Barkley, Biochemistry 1967, 58, 1152; d) S. Wang,
J. E. Hall, F. A. Tanious, W. D. Wilson, D. A. Partick, D. R. McCurdy,
B. C. Bender, R. R. Tidwell, Eur. J. Med. Chem. 1999, 34, 215.
[3] a) T. Yamato, C. Hideshima, G. K. S. Prakach, G. A. Olah, J. Org.
Chem. 1991, 56, 3192; b) O. Kruber, Ber. Dtsch. Chem. Ges. A 1932, 65,
1413; c) H. Gilman, J. Swiss, L. C. Cheney, J. Am. Chem. Soc. 1940, 62,
1963; d) A. P. Gray, V. M. Dipinto, I. J. Solomon, J. Org. Chem. 1976,
41, 2428.
R
X
R
methods
X
X
reflux 16 h
X
O
Si
O
Conditions
Yield
[4] a) R. van Helden, G. Verberg, B. Balder, Recl. Trav. Chim. Pays-Bas
1965, 84, 1263; b) J. M. Davidson, C. Triggs, J. Org. Chem. Soc. A, 1968,
1324; c) H. Iataaki, H. Yoshimoto, J. Org. Chem. 1973, 38, 76; d) F. R. S.
Clarke, R. P. C. Norman, C. B. Thomas, J. S. Wilson, J. Chem. Soc.
Perkin Trans. 1 1974, 38, 1289; e) B. Akermark, L. Eberson, E. Jonsson,
E. Petterson, J. Org. Chem. 1975, 40, 1365; f) H. Hagelin, J. D. Oslob, B.
Akermark, Chem. Eur. J. 1999, 5, 2413; g) S. D. Lombaert, L.
Blanchard, L. B. Stamford, J. Tan, E. M. Wallace, Y. Satoh, J. Fitt, D.
Hoyer, D. Simonsbergen, J. Moliterni, N. Marcopoulos, J. Med. Chem.
2000, 43, 488; h) M. V. Sargent, P. O. Stransky, J. Chem. Soc. Perkin
Trans. 1 1982, 7, 1605; i) J. A. Elix, J. L. Parker, Aust. J. Chem. 1987, 40,
187 192; j) J. A. Elix, R. Naidu, J. R. Laundon, Aust. J. Chem. 1992, 45,
785.
Method A: Na, MeOH
X, X ¼
H, H
11b
R ¼ C5H11
2b (56%)
2c (50%)
2d (57%)
2e (93%)
2 f (94%)
2g (92%)
2h (91%)
2i (75%)
2j (75%)
11c
11d
11e
11 f
11g
11h
11i
R ¼ C7H15
R ¼ C3H6OTHP
R ¼ C4H9
X, X ¼
R ¼ C5H11
R ¼ C7H15
R ¼ C3H6OTHP
R ¼ C4H9
X, X ¼
11j
R ¼ C5H11
Method B: K2CO3, MeOH
[5] a) M. J. Wu, L. J. Chang, L. M. Wei, C. F. Lin, Tetrahedron 1999, 55,
13193; b) M. J. Wu, C. F. Lin, S. H. Chen, Org. Lett. 1999, 1, 767.
[6] K. Sonogashira, T. Yatake, Y. Tohda, S. Takahashi, N. Hagihara, Chem.
Commun. 1977, 291.
11b
11e
2b (56%)
2e (93%)
THP ¼ tetrahydropyran
[7] Characterization data: 2a: 1H NMR (CDCl3, 200 MHz): d ¼ 7.98 (dd,
J ¼ 7.4, 1.8 Hz, 1H), 7.51 7.32 (m, 4H), 7.13 (dd, J ¼ 6.6, 1.6 Hz, 1H),
3.15 (t, J ¼ 7.4 Hz, 2H), 1.84 1.72 (m, 2H), 1.57 1.26 (m, 2H), 1.00 ppm
(t, J ¼ 7.2 Hz, 3H); 13C NMR (CDCl3, 50 MHz): d ¼ 156.3, 156.0, 138.6,
126.9, 126.4, 124.3, 123.0, 122.6, 122.3, 122.2, 111.5, 109.0, 33.5, 31.9, 22.7,
14.0 ppm; HRMS (EI) calcd for C16H16O 224.1201, found 224.1207. 2b:
1H NMR (CDCl3, 200 MHz): d ¼ 7.98 (dd, J ¼ 7.8, 2.0 Hz, 1H), 7.60 (dd,
J ¼ 7.8, 1.6 Hz, 1H), 7.50 7.32 (m, 4H), 7.13 (dd, J ¼ 7.0, 1.8 Hz, 1H),
3.13 (t, J ¼ 7.6 Hz, 2H), 1.85 1.77 (m, 2H), 1.56 1.38 (m, 4H), 0.92 ppm
(t, J ¼ 7.6 Hz, 3H); 13C NMR (CDCl3, 50 MHz): d ¼ 156.2, 156.0, 138.7,
126.9, 126.5, 124.6, 123.0, 122.6, 122.3, 122.1, 111.5, 109.1, 33.8, 31.9, 29.5,
22.6, 14.1 ppm; HRMS (EI) calcd for C17H18O 238.1358, found
238.1360. 2c: 1H NMR (CDCl3, 200 MHz): d ¼ 8.01 (dd, J ¼ 8.0,
1.2 Hz, 1H), 7.71 (d, J ¼ 7.6 Hz, 1H), 7.63 (dd, J ¼ 7.6 Hz, 1H), 7.56
7.41 (m, 2H), 7.32 7.21 (m, 2H), 4.61 (t, J ¼ 3.2 Hz, 1H), 3.96 3.85 (m,
2H), 3.61 3.47 (m, 2H), 2.69 (t, J ¼ 6.4 Hz, 2H), 2.04 1.84 (m, 2H),
1.75 1.48 ppm(m, 6H); 13C NMR (CDCl3, 50 MHz): d ¼ 156.4, 156.0,
138.7, 126.9, 126.4, 124.3, 123.0, 122.6, 122.3, 122.2, 111.5, 109.0, 33.8,
31.9, 29.7, 29.6, 22.6, 21.0, 14.2 ppm; HRMS (EI) calcd for C20H22O3
310.1569, found 310.1570. 2d: 1H NMR (CDCl3, 200 MHz): d ¼ 7.96
(dd, J ¼ 7.8, 1.0 Hz, 1H), 7.59 (dt, J ¼ 7.6, 1.0 Hz, 1H), 7.57 7.32 (m, 4H),
7.13 (dd, J ¼ 7.6, 1.4 Hz, 1H), 3.13 (t, J ¼ 7.6 Hz, 2H), 1.85 1.73 (m, 2H),
1.53 1.23 (m, 8H), 0.90 ppm (t, J ¼ 7.8 Hz, 3H); HRMS (EI) calcd for
C19H22O 266.1671, found 266.1672. 2e: 1H NMR (CDCl3, 400 MHz):
d ¼ 8.02 (dd, J ¼ 8.0, 1.2 Hz, 1H), 7.73 (d, J ¼ 1.2 Hz, 1H), 7.62 (dd, J ¼
7.6, 0.8 Hz, 1H), 7.55 7.51 (m, 2H), 7.36 (td, J ¼ 8.0, 1.6 Hz, 1H), 7.31
7.22 (m, 3H), 2.57 (t, J ¼ 6.8 Hz, 2H), 1.73 1.67 (m, 2H), 1.66 1.50 (m,
2H), 0.99 ppm(t, J ¼ 7.2 Hz, 3H); 13C NMR (CDCl3, 100 MHz): d ¼
154.1, 154.0, 134.0, 131.1, 129.2, 127., 127.6, 126.4, 124.5, 122.8, 121.2,
120.5, 111.0, 105.4, 96.1, 80.5, 30.5, 22.0, 19.4, 13.6 ppm; HRMS (EI)
calcd for C20H18O 274.1358, found 274.1346. 2 f: 1H NMR (CDCl3,
200 MHz): d ¼ 8.06 (dd, J ¼ 7.0, 0.8 Hz, 1H), 7.78 (s, 1H), 7.67 7.54 (m,
3H), 7.46 7.23 (m, 4H), 2.58 (t, J ¼ 7.0 Hz, 3H), 1.78 1.61 (m, 2H),
1.61 1.28 (m, 4H), 0.96 ppm (t, J ¼ 7.4 Hz, 3H); 13C NMR (CDCl3,
50 MHz): d ¼ 154.1, 154.0, 134.0, 131.1, 129.2, 127.7, 127.6, 126.4, 124.5,
122.7, 121.1, 120.5, 110.9, 105.4, 96.2, 80.5, 31.2, 28.2, 22.2, 19.8,
13.9 ppm; HRMS (EI) calcd for C21H20O 288.1515, found 288.1513. 2g:
1H NMR (CDCl3, 200 MHz): d ¼ 8.03 (dd, J ¼ 7.2, 1.2 Hz, 1H), 7.75 (s,
1H), 7.74 7.52 (m, 4H), 7.44 7.21 (m, 4H), 2.56 (t, J ¼ 7.0 Hz, 2H), 1.76
1.68 (m, 2H), 1.56 1.27 (m, 8H), 0.90 (t, J ¼ 7.0 Hz, 3H); 13C NMR
(CDCl3, 50 MHz): d ¼ 154.2, 154.1, 134.0, 131.1, 129.2, 127.8, 127.6,
126.4, 124.5, 122.7, 121.2, 120.6, 111.0, 105.4, 96.2, 80.5, 31.7, 29.0, 28.9,
28.5, 22.6, 19.8, 14.0 ppm; HRMS (EI) calcd for C23H24O 316.1828,
methanol gave 2k in 51% yield. On the other hand, treatment
of 11k with potassiumcarbonate in refluxing methanol gave
2k in 65% yield. [Eq. (2)]
methods
(2)
Si
O
O
2k (51%, by Method A)
2k (65%, by Method B)
11k
In conclusion, we have presented an efficient method for
the synthesis of a series of 5-substituted dibenzofurans and
related molecules in moderate to good yields by anionic
cycloaromatization of enediynes.
Experimental Section
General procedure for methanolysis of 11 (Method A): Freshly cut sodium
metal (5 mmol) was added to a solution of 2-(6-substituted 3(Z)-hexen-1,5-
diynyl)phenyl tert-butyldimethylsilyl ethers (1 mmol) in 10 mL of meth-
anol, the solution was heated to reflux and stirred for 16 h. After cooling to
room temperature, the methanol was removed in vacuum. Saturated
NaCl(aq.) was added to the residue, and extracted with EtOAc. The
combined organic layer was dried over anhydrous MgSO4(s). After
filtration and removal of solvent, the residue was purified by column
chromatography to give the separated products. Method B: The reaction
conditions were the same as described in Method A, but the sodium was
replaced with potassium carbonate (5 mmol).
Received: May 7, 2002 [Z19258]
[1] a) H. Miyagawa, M. Yamashita, T. Veno, N. Hamada, Phytochemistry
1997, 46, 1289; b) T. Kokubun, J. B. Harbone, Phytochemistry 1995, 40,
1649; c) T. Kokubun, J. B. Harbone, J. Eagles, P. G. Waterman,
Phytochemistry 1995, 39, 1033.
[2] a) H. R. Morris, G. W. Taylor, M. S. Masento, K. A. Jermyn, R. R. Kay,
Nature 1987, 328, 811; b) H. Abe, M. Vchiyama, Y. Tanaka, H. Saito,
1
found 316.1823. 2h: H NMR (CDCl3, 400 MHz): d ¼ 8.42 (dt, J ¼ 8.0,
1.2 Hz, 1H), 8.21 (dd, J ¼ 8.0, 0.8 Hz, 1H), 7.91 (dd, J ¼ 7.6, 1.2 Hz, 1H),
7.73 (dt, J ¼ 8.0, 0.8 Hz, 1H), 7.61 7.37 (m, 5H), 4.68 (t, J ¼ 4.0 Hz, 1H),
4078
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4121-4078 $ 20.00+.50/0
Angew. Chem. Int. Ed. 2002, 41, No. 21