J.-L. Vasse, J. Szymoniak / Tetrahedron Letters 45 (2004) 6449–6451
6451
3521; (c) Grovenstein, E.; Black, K. W.; Goel, S. C.;
Hughes, R. L.; Northrop, J. H.; Streeter, D. L.; Van
Derveer, D. J. Org. Chem. 1989, 54, 1671.
8. For the use of cyclopropylcarbinyl radicals in synthesis
and as radical clocks, see: (a) Newcomb, M.; Radicals in
Organic Synthesis; Sibi, M. P., Ed.; Wiley, 2001; Vol. 1,
Chapter 3.3; (b) Gansga¨uer, A.; Pierobon, M.; Radicals in
Organic Synthesis; Sibi, M. P., Ed.; Wiley, 2001; Vol. 2; (c)
Zard, S. Z. In Radical Reactions in Organic Synthesis;
Compton, R. G., Davies, S. G., Evans, J., Eds.; Oxford
University Press: Oxford, 2003, Chapters 3.2 and 3.3.
9. (a) Only recently, a radical mechanism has been postulated
for some particular zirconocene-mediated reactions, see:
Fujita, K.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J.
Am. Chem. Soc. 2001, 123, 3137; (b) Fujita, K.; Yorimitsu,
H.; Oshima, K. Synlett 2002, 337.
10. For reviews of ÔCp2ZrÕ chemistry, see: (a) Negishi, E.;
Takahashi, T. Bull. Chem. Soc. Jpn. 1998, 71, 755; (b)
Negishi, E.; Kondakov, D. Y. Chem. Soc. Rev. 1996, 26,
417; (c) Negishi, E.; Takahashi, T. Acc. Chem. Res. 1994,
27, 124.
11. A nonradicalmechanism is asol consistent with the
electrophilic halogenation reported for simpler alkylzirco-
nocenes, see: (a) Hart, D. W.; Schwartz, J. J. Am. Chem.
Soc. 1974, 96, 8115; (b) Bertelo, C. A.; Schwartz, J. J. Am.
Chem. Soc. 1976, 98, 262.
Scheme 4.
reactions possibly proceed through ring opening from
an intermediate zirconium ate complex. They involve a
substituted homoallyl anion equivalent and lead to the
creation of a quaternary carbon centre.
In conclusion, we have generated cyclopropylcarbinyl-
zirconocenes from homoallylic ethers and studied their
in situ transformations into functionalized cyclopropyl-
carbinylcompounds. A remarkabel feature of these
reactions is that they occurred without ring opening.
However, ring-opening products could be obtained
selectively by treating the zirconium intermediate with
MeLi prior to functionalization.
References and notes
1. (a) Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987,
87, 411; (b) Salaun, J. In The Chemistry of the Cyclopropyl
12. Similarly, the reaction of 2a with I2 gave the correspond-
ing iodide; however, this compound appeared unstable.
13. Starting from an homoallylic ether bearing two alkyl
groups, complex reaction mixtures containing alkenes
were obtained.
¨
Group; Rappoport, Z., Ed.; Wiley: New York, 1987; (c) de
Meijere, A., Ed.Houben-Weyl, Methods of Organic
Chemistry; Thieme: Stuttgart, 1997; Vol. 117.
1
2. For reviews see: (a) de Meijere, A.; Kozhushkov, S. I.;
Savchenko, A. I. In Titanium and Zirconium in Organic
Synthesis; Marek, I., Ed.; Wiley–VCH: Weinheim, 2002,
Chapter 11; (b) Kulinkovich, O. G.; de Meijere, A. Chem.
Rev. 2000, 100, 2789; (c) Kulinkovich, O. G. Chem. Rev.
2003, 103, 2597.
3. (a) Bertus, P.; Szymoniak, J. Chem. Commun., 2001, 1792;
(b) Bertus, P.; Szymoniak, J. J. Org. Chem. 2002, 67, 3965;
(c) Laroche, C.; Bertus, P.; Szymoniak, J. Tetrahedron
Lett. 2003, 44, 2485; (d) Bertus, P.; Szymoniak, J. Synlett,
2003, 265; (e) Bertus, P.; Szymoniak, J. J. Org. Chem.
2003, 68, 7133.
14. Selected data for 5a: H NMR (CDCl3, 250MHz): d 1.31
(m, 2H), 1.88 (m, 1H), 2.98 (ABX system, 2H), 7.03–7.43
(m, 10H); 13C NMR (CDCl3, 62.5MHz): d 17.7, 23.1,
34.6, 51.5, 125.1, 125.8, 126.7, 127.3, 127.5, 129.2, 139.3,
144.7.
15. (a) Dixon, S.; Whitby, R. J. In Titanium and Zirconium in
Organic Synthesis; Marek, I., Ed.; Wiley–VCH: Wein-
heim, 2002, Chapter 3; (b) Dixon, S.; Fillery, S. M.;
Kasatkin, A.; Norton, D.; Tomas, E.; Whitby, R. J.
Tetrahedron 2004, 60, 1401.
16. (a) Wipf, P.; Jahn, W. Tetrahedron 1996, 52, 12853; (b)
Lipshutz, B. H.; Pfeiffer, S. S.; Nogson, K.; Tomioka, T.
In Titanium and Zirconium in Organic Synthesis; Marek,
I., Ed.; Wiley–VCH: Weinheim, 2002, Chapter 4.
4. (a) Bertus, P.; Gandon, V.; Szymoniak, J. Chem. Commun.
2000, 171; (b) Gandon, V.; Bertus, P.; Szymoniak, J. Eur.
J. Org. Chem. 2000, 3713.
1
17. Selected data for 6: H NMR (CDCl3, 250MHz): d 0.96
5. Gandon, V.; Szymoniak, J. Chem. Commun., 2002, 1308.
6. Gandon, V.; Laroche, C.; Szymoniak, J. Tetrahedron Lett.
2003, 44, 4827.
7. (a) de Meijere, A., Ed.Houben-Weyl, Methods of Organic
Chemistry; Thieme: Stuttgart, 1997; Vol. E17, p 2686, and
references cited therein; (b) Only a few examples of
reactions without ring opening have been reported, see:
Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1979, 101,
(m, 1H); 1.25 (m, 2H), 1.69 (m, 2H), 3.66 (td, J= 6.5, 2.0,
Hz, 2H), 7.04–7.38 (m, 10H); 13C NMR (CDCl3,
62.5MHz): d 20.8, 23.3, 34.5, 35.2, 63.2, 121.2, 126.9,
128.2, 128.7, 128.8, 131.0, 142.0, 147.6; HRMS: found
239.1426, calcd for C17H19O+ 239.1436 (24, M+1).
18. This result is noteworthy, since transmetallations are
generally more difficult with alkyl- than with alkenylzirco-
nocenes.