P h osp h a a d a m a n ta n es a s Liga n d s for P a lla d iu m Ca ta lyzed
Cr oss-Cou p lin g Ch em istr y: Libr a r y Syn th esis, Ch a r a cter iza tion ,
a n d Scr een in g in th e Su zu k i Cou p lin g of Alk yl Ha lid es a n d
Tosyla tes Con ta in in g â-Hyd r ogen s w ith Bor on ic Acid s a n d
Alk ylbor a n es
Tim Brenstrum,† David A. Gerristma,† George M. Adjabeng,† Christopher S. Frampton,‡
J ames Britten,† Alan J . Robertson,§ J ames McNulty,† and Alfredo Capretta*,†
Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1,
Bruker-Nonius B.V., Oostsingel 209, 2612 HL Delft, The Netherlands, and Cytec Canada Inc.,
P.O. Box 240, Niagara Falls, Ontario, Canada L2E 6T4
capretta@mcmaster.ca
Received J uly 2, 2004
A 15-member library of phosphaadamantane ligands has been prepared via P-arylation of 1,3,5,7-
tetramethyl-2,4,8-trioxa-6-phosphaadamantane. Screening of this tertiary phosphine collection has
allowed for the rapid determination of the most suitable ligand, specifically 1,3,5,7-tetramethyl-
6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane, for facilitating Suzuki-type couplings
of alkyl halides or tosylates containing â-hydrogens with either boronic acids or alkylboranes.
Organopalladium cross-coupling reactions are among
the most useful and reliable methods for carbon-carbon
bond formation.1 The renewed interest in this chemistry
has been driven, to a great extent, by the development
of synthetic protocols employing sterically demanding,
electron-rich phosphine ligands.2 Utilization of catalytic
systems incorporating these bulky phosphines has al-
lowed for the successful coupling of even the least-
reactive partners in the Suzuki,3 Stille,4 Sonogashira,5
aryl amination,6 and ketone arylation7 reactions among
others. A recent addition to the organopalladium family
of reactions involves the Suzuki-type couplings of alkyl
halides or tosylates containing â-hydrogens with either
boronic acids or alkylboranes. While aryl and alkenyl
halides have been routinely used in the Suzuki reaction,
halides bonded to sp3-hybridized carbons have been
generally overlooked due to the slower rate of oxidative
addition of alkyl halides to palladium and their propen-
sity to undergo â-hydride elimination rather than the
desired coupling reaction. Fu has shown8 that the ap-
plication of palladium catalyst systems utilizing bulky
alkylphosphines allows for the Suzuki coupling of alkyl-
halides with a variety of boronic acids and alkylboranes
with little concomitant elimination product.
Overall, however, a review of the current chemical
literature reveals that while certain phosphines acceler-
ate a particular reaction, the same phosphine may have
little effect on a different palladium-catalyzed cross-
coupling. Although some phosphines show a greater
versatility than others, a ligand that can successfully be
employed in all organopalladium coupling reactions has
yet to be described. In our lab, for example, catalyst
systems incorporating 1,3,5,7-tetramethyl-2,4,8-trioxa-
6-phenyl-6-phosphaadamantane (Figure 1, 2) have al-
lowed for effective Suzuki cross-coupling of a variety of
† McMaster University.
‡ Bruker-Nonius.
§ Cytec Canada Inc.
(1) Metal-Catalyzed Cross Coupling Reactions; Diederich, F., Stang,
P., Eds.; Wiley-VCH: New York, 1998.
(2) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176-
4211.
(3) Littke, A. F.; Dai, C.; Fu, G. C. J . Am. Chem Soc. 2000, 122,
4020-4028. Yin, J .; Rainka, M. P.; Zhang, X.; Buchwald, S. L. J . Am.
Chem. Soc. 2002, 124, 1162-1163.
(4) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1999, 38, 2411-
2413.
(5) Tykwinski, R. R. Angew. Chem., Int. Ed. 2003, 42, 1566-1568.
Hundertmark, T.; Littke, A. F.; Buchwald, L. S.; Fu, G. C. Org. Let.
2000, 2, 1729-1731. Bohm, V. P. W.; Herrmann, W. A. Eur. J . Org.
Chem. 2000, 22, 3679-3681. Gelman, D.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2003, 42, 5993-5996. Pal, M.; Parasuraman, K.; Gupta,
S.; Yeleswarapu, K. R. Synlett 2002, 14, 1976-1982. Fukuyama, T.;
Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I. Org. Lett. 2002, 4, 1691-
1694. Me´ry, D.; Heuze, K.; Astruc, D. Chem. Commun. 2003, 1934-
1935.
(6) Reddy, N. P.; Tanaka, M. Tetrahedron Lett. 1997, 38, 4807-4810.
Also see: Wolfe, J . P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999,
38, 2413-2416. Kataoka, N.; Shelby, Q.; Stambuli, J . P.; Hartwig, J .
F. J . Org. Chem. 2002, 67, 5553-5566.
(8) (a) Netherton, M. R.; Dai, C.; Neuschutz, K.; Fu, G. C. J . Am.
Chem Soc. 2001, 123, 10099-10100. (b) Kirchhoff, J . H.; Netherton,
M. R.; Hills, I. D.; Fu, G. C. J . Am. Chem Soc. 2002, 124, 13662-
13663. (c) Kirchhoff, J . H.; Dai, C.; Fu, G. C. Angew. Chem., Int. Ed.
2002, 41, 1945-1947. (d) Netherton, M. R.; Fu, G. C. Angew. Chem.,
Int. Ed. 2002, 41, 3910-3912. (e) Hills, I. D.; Netherton, M. R.; Fu, G.
C. Angew. Chem., Int. Ed. 2003, 42, 5749-5752. (f) Zhou, J .; Fu, G. C.
J . Am. Chem. Soc. 2004, 126, 1340-1341. For analogous Stille cross-
couplings see: Menzel, K.; Fu, G. C. J . Am. Chem. Soc. 2003, 125,
3718-3719. For analogous Negishi reactions see: Wiskur, S. L.; Korte,
A.; Fu, G. C. J . Am. Chem. Soc. 2004, 126, 82-83. For analogous
Hiyama reactions see: Lee, J .-Y.; Fu, G. C. J . Am. Chem. Soc. 2003,
125, 5616-5617.
(7) Culkin, D. A.; Hartwig, J . F. Acc. Chem. Res. 2003, 36, 234-
245. Viciu, M. S.; Kelly, R. A., III; Stevens, E. D.; Naud, F.; Studer,
M.; Nolan, S. P. Org. Lett. 2003, 5, 1479-1482. Fox, J . M.; Huang, X.;
Chieffi, A.; Buchwald, S. L. J . Am. Chem. Soc. 2000, 122, 1360-1370.
10.1021/jo048875+ CCC: $27.50 © 2004 American Chemical Society
Published on Web 09/30/2004
J . Org. Chem. 2004, 69, 7635-7639
7635