Notes and references
1 S. T. Gregory and A. E. Dahlberg, Nat. Struct. Mol. Biol., 2004,
11, 586.
2 D. Buynak, Curr. Med. Chem., 2004, 11, 1951; H.-Y. Zhai,
C. Zhao, N. Zhang, M.-N. Jin, S.-A. Tang, N. Qin, D.-X. Kong
and H.-Q. Duan, J. Nat. Prod., 2012, 75, 1305.
3 G. W. Zamponi and R. J. French, Biophys. J., 1993, 65, 2335;
M. M. McNulty, G. B. Edgerton, R. D. Shah, D. A. Hanck,
H. A. Fozzard and G. M. Lipkind, J. Physiol., 2007, 581, 41.
4 R. J. Palmer, Polyamides, Plastics, Encycl. Polym. Sci. Technol.,
2001, 618; T. Sainsbury, K. Erickson, D. Okawa, C. S. Zonte,
J. M. J. Frechet and A. Zettl, Chem. Mater., 2010, 22, 2164;
´
Y. Wang, Z. Shi and J. Yin, Polymer, 2011, 52, 3661.
5 C. B. Aakeroy, S. V. Panikkattu, B. DeHaven and J. Desper,
¨
Cryst. Growth Des., 2012, 12, 2579; D.-W. Zhang, X. Zhao,
J.-L. Hou and Z.-T. Li, Chem. Rev., 2012, 112, 5271; M. Sarkar
and K. Biradha, Cryst. Growth Des., 2006, 6, 202; C. B. Aakeroy,
¨
I. Hussain, S. Forbes and J. Desper, CrystEngComm, 2007, 9, 46.
6 J. Paradowska, M. Pasternak, B. Gut, B. Gryz"o and J. Mlynarski,
J. Org. Chem., 2012, 77, 173; S. Saravanan, A. Sadhukhan,
N. H. Khan, R. I. Kureshy, S. H. R. Abdi and H. C. Bajaj,
J. Org. Chem., 2012, 77, 4375; L. Bateman, S. W. Breeden and
P. O’Leary, Tetrahedron: Asymmetry, 2008, 19, 391; J.-R. Chen,
X.-Y. Li, X.-N. Xing and W.-J. Xiao, J. Org. Chem., 2006,
71, 8198; M. Kinsella, P. G. Duggan, J. Muldoon, K. S. Eccles,
S. E. Lawrence and C. M. Lennon, Eur. J. Org. Chem., 2011, 1125.
7 V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471;
C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011,
40, 3405; G.-L. Li, K. K.-Y. Kung and M.-K. Wong, Chem.
Commun., 2012, 48, 4112; F. Xiao, Y. Liu, C. Tang and
G.-J. Deng, Org. Lett., 2012, 14, 984; H. Charville, D. Jackson,
G. Hodges and A. Whiting, Chem. Commun., 2010, 46, 1813.
Fig. 1 (a) Measured and simulated PXRD patterns of diamide 4;
(b) crystal packing of succinamide 4 b-form (view down the b-axis);
(c) measured and simulated PXRD patterns of amide 6a; (d) Rietveld
plot for 6a (blue – measured, red – calculated, grey – difference);
(e) arrangement of 6a molecules in the crystal structure (view down the
c-axis).
our approach to provide a fully mechanochemical synthesis–
catalysis sequence.
8 S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic,
´
The crystal and molecular structures of 2d, 2e and 4 were
determined by single-crystal X-ray analysis. In crystals of 2d
and 2e amide molecules are connected by intermolecular
hydrogen bonds of the N–Hꢀ ꢀ ꢀOQC type forming a linear
tape along the crystallographic a-axis (Fig. S47–S51, ESIz).
Although the crystal structure of 4 was known (CCDC code
KASKUL),20 we now report a second monoclinic b-polymorph
whose simulated pattern matches the one for the milling
product (Fig. 1a). Differences in molecular structures are small
and mostly in the spatial arrangement of terminal phenyl rings
(Fig. S55, ESIz). The primary structural motif in both forms are
molecular arrays assembled by N–Hꢀ ꢀ ꢀOQC hydrogen bonds
F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack,
L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed and
D. C. Waddell, Chem. Soc. Rev., 2012, 41, 413; T. Friscic, Chem. Soc.
´
Rev., 2012, 41, 3493; A. Stolle, T. Szuppa, S. E. S. Leonhardt and
B. Ondruschka, Chem. Soc. Rev., 2011, 40, 2317.
9 H. Thakuria and G. Das, J. Chem. Sci., 2006, 118, 425.
10 F. Ravalico, S. L. James and J. S. Vyle, Green Chem., 2011, 13, 1778.
11 J. G. Hernandez and E. Juaristi, J. Org. Chem., 2010, 75, 7107.
´
12 V. Declerck, P. Nun, J. Martinez and F. Lamaty, Angew. Chem.,
Int. Ed., 2009, 48, 9318.
13 A. El-Faham and F. Albericio, Chem. Rev., 2011, 111, 6557;
E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606.
14 V. Strukil, L. Fa
´
M. Eckert-Maksic
bia
´
and T. Friscic
n, D. G. Reid, M. J. Duer, G. J. Jackson,
, Chem. Commun., 2010, 46, 9191;
´
´
2
N. Giri, C. Bowen, J. S. Vyle and S. L. James, Green Chem., 2008,
10, 627; F. Schneider, T. Szuppa, A. Stolle, B. Ondruschka and
H. Hopf, Green Chem., 2009, 11, 1894.
in a symmetrical R2 (14) supramolecular synthon. In b-form,
parallel chains are stacked by C–Hꢀ ꢀ ꢀp interactions into a 2-D
network (Fig. 1b, S53 and S54, ESIz).
15 The room temperature solubility of the isolated amides in water
was estimated to be less than 0.2 mg mLꢁ1
.
The purity of synthesised amides (see ESIz) enabled structure
determination from PXRD data21 collected on a laboratory
diffractometer, in line with the requirements of a solvent-free
research laboratory.14,16 In the crystal, 1e molecules are con-
nected by linear hydrogen bonds into 1-D tapes (Fig. S44,
ESIz). Molecules of 6a are held together by weak C–Hꢀ ꢀ ꢀO
and CAr–Hꢀ ꢀ ꢀH–CAr interactions (Fig. 1c–e).
16 V. Strukil, M. D. Igrc, L. Fa
D. G. Reid, M. J. Duer, I. Halasz, C. Mottillo and T. Friscic
Green Chem., 2012, 14, 2462; V. Strukil, M. D. Igrc, M. Eckert-
Maksic and T. Friscic, Chem. Commun., 2012, 48, 9705.
bian, M. Eckert-Maksic, S. L. Childs,
´ ´ ´
´
,
´
´
17 Short neat grinding with NaHCO3 or K2CO3 as the base and the
grinding auxiliary gave dipeptide 10c in 25–50% isolated yields.
18 M. Bodansky, Principles of Peptide Synthesis, Springer-Verlag,
New York, 1984.
19 J. G. Herna
J. G. Herna
J. G. Herna
2012, 68, 92.
´
ndez and E. Juaristi, J. Org. Chem., 2011, 76, 1464;
In summary, we demonstrated a mechanochemical methodology
for the efficient synthesis of amides and dipeptides from com-
mercially available acids and amines. In situ EDCꢀHCl-mediated
coupling obviates the need to pre-activate reactants and allows
the amide product isolation using only water. This reactivity
demonstrates how the course and design of mechanosynthesis
can be augmented by stoichiometric or catalytic auxiliaries.22
We acknowledge the financial support of the Ministry of
Science, Education and Sport of Croatia (Projects No. 098-
0982933-2920, 098-0982933-3218 and 098-0982904-2912) and
´
ndez and E. Juaristi, Tetrahedron, 2011, 67, 6953;
´ ´
ndez, V. Garcıa-Lopez and E. Juaristi, Tetrahedron,
´
20 S. Anjum, M. Iqbal Choudhary, S. Ali, H.-K. Funb and
A. Rahmana, Acta Crystallogr., 2005, E61, o3001.
21 S. Karki, L. Fabian, T. Friscic and W. Jones, Org. Lett., 2007,
´ ´ ´
9, 3133Crystal structures of 1e and 6a were solved using TOPAS
software: A. A. Coelho, J. Appl. Crystallogr., 2000, 33, 899.
22 A. N. Sokolov, D.-K. Bucar, J. Baltrusaitis, S. X. Gu and L. R.
MacGillivray, Angew. Chem., Int. Ed., 2010, 49, 4273; T. Friscic
D. G. Reid, I. Halasz, R. S. Stein, R. E. Dinnebier and M. J. Duer,
Angew. Chem., Int. Ed., 2010, 49, 712; B. Rodrıguez, A. Bruckmann
´
,
´
Dr Ernest Mestrovic
´
(Pliva-TAPI) for collecting the PXRD data.
and C. Bolm, Chem.–Eur. J., 2007, 13, 4710.
c
12102 Chem. Commun., 2012, 48, 12100–12102
This journal is The Royal Society of Chemistry 2012