Inorganic Chemistry
Article
Determination of the Crystal Field Splitting in an Erbium Single-Ion
Magnet with an Unusual Multiple Relaxation Mechanism. J. Am. Chem.
Soc. 2011, 133 (48), 19286−19289.
(28) Le Roy, J. J.; Jeletic, M.; Gorelsky, S. I.; Korobkov, I.; Ungur, L.;
Chibotaru, L. F.; Murugesu, M. An Organometallic Building Block
Approach To Produce a Multidecker 4f Single-Molecule Magnet. J.
Am. Chem. Soc. 2013, 135 (9), 3502−3510.
(29) Meihaus, K. R.; Long, J. R. Magnetic blocking at 10 K and a
dipolar-mediated avalanche in salts of the bis(eta8-cyclooctatetrae-
nide) complex [Er(COT)2]. J. Am. Chem. Soc. 2013, 135 (47), 17952−
17957.
Magnet. J. Am. Chem. Soc. 2015, 137 (40), 13114−13120.
(11) Gorller-Walrand, C.; Binnemans, K. In Handbook on the Physics
̈
and Chemistry of Rare Earths; Gschneidner, K. A., Eyring, L., Eds.;
North Holland, 1996; Chapter 155, Vol. 23, pp 121−283.
(12) Flanagan, B. M.; Bernhardt, P. V.; Krausz, E. R.; Luthi, S. R.;
̈
Riley, M. J. Ligand-Field Analysis of an Er(III) Complex with a
Heptadentate Tripodal N4O3 Ligand. Inorg. Chem. 2001, 40 (21),
5401−5407.
(13) Flanagan, B. M.; Bernhardt, P. V.; Krausz, E. R.; Luthi, S. R.;
̈
Riley, M. J. A Ligand-Field Analysis of the trensal (H3trensal = 2,2′,2″-
Tris(salicylideneimino)triethylamine) Ligand. An Application of the
Angular Overlap Model to Lanthanides. Inorg. Chem. 2002, 41 (20),
5024−5033.
(14) Cucinotta, G.; Perfetti, M.; Luzon, J.; Etienne, M.; Car, P.-E.;
Caneschi, A.; Calvez, G.; Bernot, K.; Sessoli, R. Magnetic Anisotropy
in a Dysprosium/DOTA Single-Molecule Magnet: Beyond Simple
Magneto-Structural Correlations. Angew. Chem., Int. Ed. 2012, 51 (7),
1606−1610.
(15) Perfetti, M.; Lucaccini, E.; Sorace, L.; Costes, J. P.; Sessoli, R.
Determination of magnetic anisotropy in the LnTRENSAL complexes
(Ln = Tb, Dy, Er) by torque magnetometry. Inorg. Chem. 2015, 54
(7), 3090−3092.
(30) Le Roy, J. J.; Korobkov, I.; Murugesu, M. A sandwich complex
with axial symmetry for harnessing the anisotropy in a prolate
erbium(III) ion. Chem. Commun. 2014, 50 (13), 1602−1604.
(31) Vonci, M.; Mason, K.; Suturina, E. A.; Frawley, A. T.; Worswick,
S. G.; Kuprov, I.; Parker, D.; McInnes, E. J. L.; Chilton, N. F.
Rationalization of Anomalous Pseudocontact Shifts and Their Solvent
Dependence in a Series of C3-Symmetric Lanthanide Complexes. J.
Am. Chem. Soc. 2017, 139 (40), 14166−14172.
(32) Wender, P. A.; Christy, J. P. Nickel(0)-Catalyzed [2 + 2 + 2 + 2]
Cycloadditions of Terminal Diynes for the Synthesis of Substituted
Cyclooctatetraenes. J. Am. Chem. Soc. 2007, 129 (44), 13402−13403.
(33) Bleaney, B. Nuclear magnetic resonance shifts in solution due to
lanthanide ions. J. Magn. Reson. 1972, 8 (1), 91−100.
(16) Ishikawa, N.; Iino, T.; Kaizu, Y. Determination of Ligand-Field
Parameters and f-Electronic Structures of Hetero-Dinuclear Phthalo-
cyanine Complexes with a Diamagnetic Yttrium(III) and a Para-
magnetic Trivalent Lanthanide Ion. J. Phys. Chem. A 2002, 106 (41),
9543−9550.
(17) Ishikawa, N.; Sugita, M.; Okubo, T.; Tanaka, N.; Iino, T.; Kaizu,
Y. Determination of Ligand-Field Parameters and f-Electronic
Structures of Double-Decker Bis(phthalocyaninato)lanthanide Com-
plexes. Inorg. Chem. 2003, 42 (7), 2440−2446.
(18) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y.
Lanthanide Double-Decker Complexes Functioning as Magnets at the
Single-Molecular Level. J. Am. Chem. Soc. 2003, 125 (29), 8694−8695.
(19) Novikov, V. V.; Pavlov, A. A.; Belov, A. S.; Vologzhanina, A. V.;
Savitsky, A.; Voloshin, Y. Z. Transition Ion Strikes Back: Large
Magnetic Susceptibility Anisotropy in Cobalt(II) Clathrochelates. J.
Phys. Chem. Lett. 2014, 5 (21), 3799−3803.
(34) Funk, A. M.; Finney, K.-L. N. A.; Harvey, P.; Kenwright, A. M.;
Neil, E. R.; Rogers, N. J.; Kanthi Senanayake, P.; Parker, D. Critical
analysis of the limitations of Bleaney’s theory of magnetic anisotropy
in paramagnetic lanthanide coordination complexes. Chem. Sci. 2015, 6
(3), 1655−1662.
(35) Blackburn, O. A.; Edkins, R. M.; Faulkner, S.; Kenwright, A. M.;
Parker, D.; Rogers, N. J.; Shuvaev, S. Electromagnetic susceptibility
anisotropy and its importance for paramagnetic NMR and optical
spectroscopy in lanthanide coordination chemistry. Dalton Trans 2016,
45 (16), 6782−6800.
(36) Sievers, J. Asphericity of 4f-shells in their Hund’s Rule Ground
State. Z. Phys. B: Condens. Matter Quanta 1982, 45, 289−296.
(37) Ungur, L.; Le Roy, J. J.; Korobkov, I.; Murugesu, M.; Chibotaru,
L. F. Fine-tuning the local symmetry to attain record blocking
temperature and magnetic remanence in a single-ion magnet. Angew.
Chem., Int. Ed. 2014, 53 (17), 4413−4417.
(20) Novikov, V. V.; Pavlov, A. A.; Nelyubina, Y. V.; Boulon, M.-E.;
Varzatskii, O. A.; Voloshin, Y. Z.; Winpenny, R. E. P. A Trigonal
Prismatic Mononuclear Cobalt(II) Complex Showing Single-Molecule
Magnet Behavior. J. Am. Chem. Soc. 2015, 137 (31), 9792−9795.
(21) Damjanovic, M.; Katoh, K.; Yamashita, M.; Enders, M.
Combined NMR Analysis of Huge Residual Dipolar Couplings and
Pseudocontact Shifts in Terbium(III)-Phthalocyaninato Single Mole-
cule Magnets. J. Am. Chem. Soc. 2013, 135 (38), 14349−14358.
(22) Damjanovic, M.; Morita, T.; Katoh, K.; Yamashita, M.; Enders,
M. Ligand pi-radical interaction with f-shell unpaired electrons in
phthalocyaninato-lanthanoid single-molecule magnets: a solution
NMR spectroscopic and DFT study. Chem. - Eur. J. 2015, 21 (41),
14421−14432.
(38) Gendron, F.; Pritchard, B.; Bolvin, H.; Autschbach, J. Single-ion
−
4f element magnetism: an ab-initio look at Ln(COT)2 . Dalton Trans.
2015, 44 (46), 19886−19900.
(39) Wender, P. A.; Lesser, A. B.; Sirois, L. E. Rhodium
dinaphthocyclooctatetraene complexes: synthesis, characterization
and catalytic activity in [5 + 2] cycloadditions. Angew. Chem., Int.
Ed. 2012, 51 (11), 2736−2740.
(40) Bertini, I.; Luchinat, C. Relaxation. Coord. Chem. Rev. 1996, 150,
77−110.
(41) Bertini, I.; Luchinat, C.; Parigi, G. Solution NMR of Paramagnetic
MoleculesApplications to Metallobiomolecules and Models; Elsevier,
2001; Vol. 2.
(42) Bothner-By, A. A. eMagRes; John Wiley & Sons, Ltd., 2007; pp
2932−2938.
́
(23) Damjanovic, M.; Morita, T.; Horii, Y.; Katoh, K.; Yamashita, M.;
(43) Reilley, C. N.; Good, B. W.; Allendoerfer, R. D. Separation of
contact and dipolar lanthanide induced nuclear magnetic resonance
shifts: evaluation and application of some structure independent
methods. Anal. Chem. 1976, 48 (11), 1446−1458.
(44) Reuben, J. Structural information from chemical shifts in
lanthanide complexes. J. Magn. Reson. 1982, 50 (2), 233−236.
(45) Pinkerton, A. A.; Rossier, M.; Spiliadis, S. Lanthanide-induced
contact shifts. the average electron spin polarization, theory and
experiment. J. Magn. Reson. 1985, 64 (3), 420−425.
(46) Peters, J. A.; Huskens, J.; Raber, D. J. Lanthanide induced shifts
and relaxation rate enhancements. Prog. Nucl. Magn. Reson. Spectrosc.
1996, 28 (3−4), 283−350.
Enders, M. How Ions Arrange in Solution: Detailed Insight from NMR
Spectroscopy of Paramagnetic Ion Pairs. ChemPhysChem 2016, 17
(21), 3423−3429.
(24) Damjanovic, M.; Samuel, P. P.; Roesky, H. W.; Enders, M.
NMR analysis of an Fe(I)-carbene complex with strong magnetic
anisotropy. Dalton Trans 2017, 46 (16), 5159−5169.
(25) Hiller, M.; Maier, M.; Wadepohl, H.; Enders, M. Paramagnetic
NMR Analysis of Substituted Biscyclooctatetraene Lanthanide
Complexes. Organometallics 2016, 35 (11), 1916−1922.
(26) Suturina, E. A.; Mason, K.; Geraldes, C. F. G. C.; Kuprov, I.;
Parker, D. Beyond Bleaney’s Theory: Experimental and Theoretical
Analysis of Periodic Trends in Lanthanide-Induced Chemical Shift.
Angew. Chem., Int. Ed. 2017, 56 (40), 12215−12218.
(47) Knorr, R.; Hauer, H.; Weiss, A.; Polzer, H.; Ruf, F.; Low, P.;
̈
(27) Jeletic, M.; Lin, P.-H.; Le Roy, J. J.; Korobkov, I.; Gorelsky, S. I.;
Murugesu, M. An Organometallic Sandwich Lanthanide Single-Ion
́
Dvortsak, P.; Bohrer, P. Unpaired Spin Densities from NMR Shifts†
̈
and Magnetic Anisotropies of Pseudotetrahedral Cobalt(II) and
I
Inorg. Chem. XXXX, XXX, XXX−XXX