6612
I. K. Kostakis et al. / Tetrahedron Letters 48 (2007) 6609–6613
Qian, C.; Sun, J. Synthesis 2003, 1241–1247; (d) Dabiri,
M.; Salehi, P.; Khajavi, M. S.; Mohammadi, A. A.
Heterocycles 2004, 63, 1417–1421; (e) Bhat, B. A.; Sahu,
D. P. Synth. Commun. 2004, 34, 2169–2176; (f) Connoly,
D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry, P. J.
Tetrahedron 2005, 61, 10153–10202; (g) Potewar, T. M.;
Nadaf, R. N.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V.
Synth. Commun. 2005, 35, 231–241; (h) Liu, J.-F.; Lee, J.;
Dalton, A. M.; Bi, G.; Yu, L.; Baldino, C. M.; McElory,
E.; Brown, M. Tetrahedron Lett. 2005, 46, 1241–1244.
13. (a) Besson, T.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1
1996, 2857–2860; (b) Lamazzi, C.; Leonce, S.; Pfeiffer, B.;
Renard, P.; Guillaumet, G.; Rees, C. W.; Besson, T.
Bioorg. Med. Chem. Lett. 2000, 10, 2183–2185; (c) Besson,
T.; Guillard, J.; Rees, C. W. Tetrahedron Lett. 2000, 41,
1027–1030; (d) Soukri, M.; Guillaumet, G.; Besson, T.;
Aziane, D.; Aadil, M.; Essasi, E. M.; Akssira, M.
Tetrahedron Lett. 2000, 41, 5857–5860; (e) Domon, L.;
Le Coeur, C.; Grelard, A.; Thiery, V.; Besson, T.
Tetrahedron Lett. 2001, 42, 6671–6674; (f) Testard, A.;
Loge, C.; Leger, B.; Robert, J.-M.; Lozach, O.; Blairvacq,
M.; Meijer, L.; Thiery, V.; Besson, T. Bioorg. Med. Chem.
Lett. 2006, 16, 3419–3423.
mediates, with formamide as the solvent. Considering
that the synthesis of these molecules is a well established
procedure by conventional methods,22 the proposed
synthetic strategy could be a general method for the syn-
thesis of 2,3-dialkyl-quinazolin-4(3H)-ones.
As we have previously shown in our study of the micro-
wave-assisted decomposition of DMSO, and its use in
Pictet–Spengler heterocyclization,23 reactants may have
different behaviours under microwaves, depending on
the power input, the temperature reached, and also, on
the pressure obtained in the vials. Then, we have demon-
strated here that microwave-assisted rapid decomposi-
tion of formamide can be controlled under well
established conditions of power, temperature and time.
This phenomenon is a very convenient source of ammo-
nia for the synthesis of mono-2-substituted-quinazolin-
4(3H)-ones. Because it may also avoid the use of expen-
sive or difficult to handle reagents, it can be simply and
efficiently extended to the synthesis of various hetero-
cyclic derivatives.
14. For recent reviews see: (a) Lidstro¨m, P.; Tierney, J.;
Wathey, B.; Westmam, J. Tetrahedron 2001, 57, 9225–
9283; (b) Bogdal, D.; Penczek, P.; Pielichowski, J.;
Prociak, A. Adv. Polym. Sci. 2003, 163, 193–263; (c)
Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–6284;
(d) De la Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem. Soc.
Rev. 2005, 34, 164–178.
Acknowledgement
We wish to thank Milestone S.r.l. for support on micro-
wave experiments.
15. The ‘hybrid’ microwave platform MultiSYNTHÒ (Mile-
stone S.r.l.), is a novel dedicated microwave system for
synthetic applications. It allows a fast reaction optimiza-
tion providing high energy density in a single-mode like
configuration and an efficient scale-up (maximum working
volume 300 ml) through parallel synthesis in a multi-mode
configuration. The instrument features a special shaking
system that ensures high homogeneity of the reaction
mixtures. It is equipped with an indirect pressure-control
through pre-calibrated springs at the bottom of the vessels
shields and with both, contact-less infrared pyrometer
(IRT) and fibre-optic contact thermometer (FO) for
accurate temperature measurement. It is noteworthy that
the IRT can be calibrated directly on the temperature read
by the FO to ensure the highest accuracy and reproduc-
ibility. A complete description of this system is available at
References and notes
1. Mhaske, S. B.; Argade, P. Tetrahedron 2005, 62, 9787–
9826.
2. Kametani, T.; Loc, C. V.; Higa, T.; Koizumi, M.; Ihara,
M.; Fukumoto, K. J. Am. Chem. Soc. 1977, 99, 2306–
2309.
3. Chaudhuri, P. K. Phytochemistry 1987, 26, 587–589.
4. (a) Amin, A. H.; Tarraga, A.; Gonzalez-Tejero, A.
Synthesis 2000, 1523–1526; (b) Morris, R. C.; Hanford,
W. E.; Roger, A. J. Am. Chem. Soc. 1935, 57, 951–954; (c)
Onaka, T. Tetrahedron Lett. 1971, 12, 4387–4390.
5. Hamid, A.; Elomri, A.; Daich, A. Tetrahedron Lett. 2006,
47, 1777–1781.
6. Kacker, I. K.; Zaheer, S. H. J. Indian Chem. Soc. 1951, 28,
344–346.
All the reactions were performed in sealed 10 ml vials. The
software algorithm regulates the microwave output power
according to the temperature. The temperature was
controlled by FO and maintained constant for the desired
reaction/irradiation time, after a ramp time of 1 min. At
the end of the irradiation period, the reaction vessel was
rapidly cooled to ambient temperature with compressed-
air using the equipped cooling feature (gas-jet cooling).
The minimal reaction times were determined by perform-
ing sequential series of identical reactions at constant
temperature with different irradiation times. The comple-
tion of the reaction was estimated by TLC after each
individual reaction period.
7. Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu,
M.-A.; Kim, H.-S.; Wataya, Y.; Miura, M.; Takeshita,
M.; Oshima, Y. J. Med. Chem. 1999, 42, 3163–3166.
8. (a) Gupta, C. M.; Bhaduri, A. P.; Khanna, N. M. J. Med.
Chem. 1968, 11, 392–395; (b) Welch, W. M.; Ewing, F. E.;
Huang, J.; Menniti, F. S.; Pagnozzi, M. J.; Kelly, K.;
Seymoyr, P. A.; Guanowsky, V.; Guhan, S.; Guinn, M.
R.; Critchett, D.; Lazzaro, J.; Ganong, A. H.; DeVries, K.
M.; Staigers, T. L.; Chenard, B. L. Bioorg. Med. Chem.
Lett. 2001, 11, 177–181.
9. Kung, P.-P.; Casper, M. D.; Cook, K. L.; Wilson-Lingard,
L.; Risen, L. M.; Vickers, T. A.; Ranken, R.; Blyn, L. B.;
Wyatt, R.; Cook, P. D.; Ecker, D. J. J. Med. Chem. 1999,
42, 4705–4713.
10. Malamas, M. S.; Millen, J. J. Med. Chem. 1991, 34, 1492–
1503.
16. (a) Zentmyer, D. T.; Wagner, E. C. J. Org. Chem. 1949,
14, 967–981; (b) Errede, L. A.; Oien, H. T.; Yarian, D. R.
J. Org. Chem. 1977, 42, 12–18.
17. (a) Lemus, R. H.; Skibo, E. B. J. Org. Chem. 1992, 57,
5649–5660; (b) Bavetsias, V.; Skelton, L. A.; Yafai, F.;
Mitchell, F.; Wilson, S. C.; Allan, B.; Jackman, A. K. J.
Med. Chem. 2002, 45, 3692–3702.
11. Fetter, J.; Czuppo, T.; Hornyak, G.; Feller, A. Tetrahe-
dron 1991, 47, 9393–9410.
12. (a) Padala, S. R.; Padi, P. R.; Thipireddy, V. Heterocycles
2003, 60, 183–226; (b) Larksarp, C.; Alper, H. J. Org.
Chem. 2000, 65, 2773–2777; (c) Wang, L.; Xia, J.; Qin, F.;
18. Back, R. A.; Boden, J. C. Trans. Faraday Soc. 1971, 67,
88–96.