C O M M U N I C A T I O N S
Detailed X-ray structural data including a summary of crystallographic
parameters, select bond angles and distances, an ORTEP diagram, and
CIF file for 1. Correlation table between structural and spectroscopic
properties of selected Rh(I) and Pd(II) macrocycles (PDF). This material
metal precursor is added to 2 or 3, the heterobimetallic condensed
intermediates 4 and 5 are formed in nearly quantitative yields
(>95%) and contain (1) two different metal atoms, (2) strong
metal-phosphorus bonds, (3) weak metal-thioether bonds, (4)
weaker metal-ether bonds, and (5) substitutionally labile metal
centers. The spectra indicate that there is a set of equivalent
phosphine moieties coordinated to each metal center. The 31P{1H}
NMR spectrum of complex 4 contains a singlet at 65.0 ppm, and
this singlet lies on top of a buried doublet, Figure 1D.15 Complex
5 displays a singlet at 65.4 ppm and a doublet at 67.3 ppm
(JP-Rh ) 161 Hz) in its 31P{1H} NMR spectrum, Figure 1E. The
31P{1H} NMR chemical shifts and coupling constants for all four
of these intermediates, 2-5, are consistent with their structural
formulations and compare well with those for the symmetric,
homobimetallic model complexes.4-6
The weak ether and thioether bonds can be selectively broken
through simple substitution chemistry. By varying the reaction
conditions and incoming ligands, we synthesized fully and partially
opened macrocycles (with respect to the coordination environment
around the metal center) with 0, +1, +2, or +3 charges. Two
examples are shown in Scheme 2. In the first example, a charged
macrocycle, 8, is synthesized by first adding excess acetonitrile in
the presence of CO (1 atm). These weak ligands selectively break
the weak metal-ether bond to yield the half-opened intermediate
6.16 The thioether bonds are then broken by adding 2 equiv of a
methanol solution of KCN to yield the fully opened macrocycle
8.17 Following a similar route to synthesize the neutral macrocycle
9, 2 equiv of a methanol solution of KCN are added to a methanol
suspension of 5. The cyanide selectively breaks the palladium-
ether bonds to yield 7 as a solid that can be dissolved in methylene
chloride.18 The remaining metal-thioether bonds are then broken
by adding excess [(CH3)4N]Cl and charging the resulting solution
with CO (1 atm) to yield the fully opened, neutral macrocycle 9.19
Both sets of reactions are nearly quantitative.13 The 31P{1H} NMR
chemical shifts and coupling constants of these complexes cor-
respond to the trans position of the phosphine ligands and compare
well with the analogous symmetric, homobimetallic complexes.4-6
In conclusion, by taking advantage of the stepwise synthetic
control offered by the weak-link approach, we have prepared
partially opened and structurally flexible, fully opened heterobi-
metallic macrocycles in high yields. The mechanistic distinction
offered by this method not only provides a synthetic route to
structures unobtainable via other, thermodynamically driven, ap-
proaches, but also substantially increases the scope of the types of
structures that can be targeted via the weak-link approach.
References
(1) (a) Lehn, J.-M. Supramolecular Chemistry; VCH: New York, 1995. (b)
Vogtle, F. Supramolecular Chemistry; Wiley: Chichester, 1991. (c)
Mirkin, C. A.; Ratner, M. A. Annu. ReV. Phys. Chem. 1992, 43, 719-
754.
(2) For reviews of the field, see: (a) Seidel, S. R.; Stang, P. J. Acc. Chem.
Res. 2002, 35, 972-983. (b) Holliday, B. J.; Mirkin, C. A. Angew. Chem.,
Int. Ed. 2001, 40, 2022-2043. (c) Cotton, F. A.; Lin, C.; Murillo, C. A.
Acc. Chem. Res. 2001, 34, 759-771. (d) Dinolfo, P. H.; Hupp, J. T. Chem.
Mater. 2001, 13, 3113-3125. (e) Leininger, S.; Olenyuk, B.; Stang, P. J.
Chem. ReV. 2000, 100, 853-908. (f) Swiegers, G. F.; Malefetse, T. J.
Chem. ReV. 2000, 100, 3483-3538. (g) Caulder, D. L.; Raymond, K. N.
J. Chem. Soc., Dalton Trans. 1999, 1185-1200. (h) Fujita, M. In
ComprehensiVe Supramolecular Chemistry; Lehn, J.-M., Ed.; Pergamon:
New York, 1996; Vol. 9, pp 253-282.
(3) (a) Farrell, J. R.; Mirkin, C. A.; Guzei, I. A.; Liable-Sands, L. M.;
Rheingold, A. L. Angew. Chem., Int. Ed. 1998, 37, 465-467. (b) Farrell,
J. R.; Mirkin, C. A.; Liable-Sands, L. M.; Rheingold, A. L. J. Am. Chem.
Soc. 1998, 120, 11834-11835. (c) Holliday, B. J.; Farrell, J. R.; Mirkin,
C. A.; Lam, K.-C.; Rheingold, A. L. J. Am. Chem. Soc. 1999, 121, 6316-
6317. (d) Liu, X.; Stern, C. L.; Mirkin, C. A. Organometallics 2002, 21,
1017-1019. (e) Ovchinnikov, M. V.; Holliday, B. J.; Mirkin, C. A.;
Zakharov, L. N.; Rheingold, A. L. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 4927-4931.
(4) Farrell, J. R.; Eisenberg, A. H.; Mirkin, C. A.; Guzei, I. A.; Liable-Sands,
L. M.; Incarvito, C. D.; Rheingold, A. L.; Stern, C. L. Organometallics
1999, 18, 4856-4868.
(5) (a) Eisenberg, A. H.; Dixon, F. M.; Mirkin, C. A.; Stern, C. L.; Incarvito,
C. D.; Rheingold, A. L. Organometallics 2001, 20, 2052-2058. (b) Liu,
X.; Eisenberg, A. H.; Stern, C. L.; Mirkin, C. A. Inorg. Chem. 2001, 40,
2940-2941.
(6) Dixon, F. M.; Eisenberg, A. H.; Farrell, J. R.; Mirkin, C. A.; Liable-
Sands, L. M.; Rheingold, A. L. Inorg. Chem. 2000, 39, 3432-3433.
(7) (a) Slone, C. S.; Weinberger, D. A.; Mirkin, C. A. In Progress In Inorganic
Chemistry; Karlin, K. D., Ed.; John Wiley & Sons: New York, 1999;
Vol. 48, pp 233-350. (b) Bader, A.; Lindner, E. Coord. Chem. ReV. 1991,
108, 27-110. (c) Lindner, E.; Pautz, S.; Haustein, M. Coord. Chem. ReV.
1996, 155, 145-162.
(8) Pirrung, M. C.; Nunn, D. S. Tetrahedron 1996, 52, 5707-5738.
(9) [Pd(NCCH3)4][BF4]2.
(10) Generated from [RhCl(COE)2]x via reaction with AgBF4 in CH2Cl2
(COE ) cyclooctene); see Supporting Information.
(11) 2: 31P{1H} NMR (CD2Cl2) δ 63.7 (s, Ph2PCH2CH2S), -21.5 (s, Ph2PCH2-
CH2O).
(12) 3: 31P{1H} NMR (CD2Cl2) δ 66.1 (d, JRh-P ) 162 Hz, Ph2PCH2CH2S),
-20.3 (s, Ph2PCH2CH2O).
(13) As determined by 31P{1H} NMR spectroscopy.
(14) Hutton, A. T. In ComprehensiVe Coordination Chemistry; Wilkinson, G.,
Ed.; Pergamon: New York, 1987; Vol. 5, pp 1131-1155.
(15) This doublet can be see upon opening the Pd side of the intermediate as
the prominent Pd-P resonance shifts upon addition of KCN.
(16) 6: 31P{1H} NMR (CD2Cl2) δ 63.2 (s, Ph2PCH2CH2S), 22.0 (d, Ph2PCH2-
CH2O, JRh-P ) 120 Hz).
(17) 8: 31P{1H} NMR (CD2Cl2) δ 17.9 (s, Ph2PCH2CH2S), 16.9 (d, Ph2PCH2-
CH2O, JRh-P ) 122 Hz).
Acknowledgment. C.A.M. acknowledges the NSF (CHE-
9625391) for support of this research and Charlotte L. Stern for
solving the structure of 1.
(18) 7: 31P{1H} NMR (CD2Cl2) δ 64.2 (d, Ph2PCH2CH2S, JRh-P ) 164 Hz),
17.3 (s, Ph2PCH2CH2O).
(19) 9: 31P{1H} NMR (CD2Cl2) δ 21.4 (d, Ph2PCH2CH2S, JRh-P ) 122 Hz),
16.6 (s, Ph2PCH2CH2O).
Supporting Information Available: Detailed experimental pro-
cedures and data for the syntheses of 1-9 and the precursors to 1.
JA027936N
9
J. AM. CHEM. SOC. VOL. 125, NO. 10, 2003 2837