Paper
Organic & Biomolecular Chemistry
volumes (10 μL) were delivered in 0.5 s time intervals with 19 X.-Q. Zhu, Q.-Y. Liu, Q. Chen and L.-R. Mei, J. Org. Chem.,
300–450 s between every two injections. The reaction heat was 2010, 75, 789.
obtained by the integration of each peak except for the first 20 Y. Cao, S.-C. Zhang, M. Zhang, G.-B. Shen and X.-Q. Zhu,
one.
J. Org. Chem., 2013, 78, 7154.
21 S.-M. Si, Y.-H. Fu and X.-Q. Zhu, J. Phys. Chem. C, 2015,
119, 62.
22 K. Xia, G.-B. Shen and X.-Q. Zhu, Org. Biomol. Chem., 2015,
13, 6255.
Acknowledgements
Financial support from the National Natural Science Foun- 23 X.-Q. Zhu, X. Chen and L.-R. Mei, Org. Lett., 2011, 13,
dation of China (Grant No. 21472099, 21390400 and 21102074)
and the 111 Project (B06005) is gratefully acknowledged.
2456.
24 The hydride affinity of Ph3C+ cation in acetonitrile
(−104.6 kcal mol−1) is derived from the reaction heat of
Ph3C+ with BNAH in acetonitrile at 298 K (40.4 kcal mol−1
)
and the molar enthalpy change of BNAH to release hydride
anions in acetonitrile at 298 K (64.2 kcal mol−1). The
former is measured using ITC and the latter is a known
number (see ref. 25).
Notes and references
1 K. M. Fararh, Y. Atoji, Y. Shimizu, T. Shiina, H. Nikami and
T. Takewaki, Res. Vet. Sci., 2004, 77, 123.
2 H. Rchid, H. Chevassus, N. Rachid, C. Guiral, P. Petit, 25 X.-Q. Zhu, M.-T. Zhang, A. Yu, C.-H. Wang and J.-P. Cheng,
M. Chokairi and Y. Sauvaire, Fundam. Clin. Pharmacol.,
2004, 18, 525.
J. Am. Chem. Soc., 2008, 130, 2501.
26 D. D. M. Wayner and V. D. Parker, Acc. Chem. Res., 1993, 26,
3 B. Meddah, R. Ducroc, M. E. A. Faouzi, B. Eto, L. Mahraoui,
287.
A. Benhaddou-Andaloussi, L. C. Martineau, Y. Cherrah and 27 Eqn (9)–(11) were constructed from the thermodynamic
P. S. Haddad, J. Ethnopharmacol., 2009, 121, 419.
4 Y.-M. Liu, Y.-H. Jiang, Q.-H. Liu and B.-Q. Chen, Evid Based
Complement Alternat Med., 2011, 2011, 538671.
5 T. Yuan, P. Nahar, M. Sharma, K. Liu, A. Slitt, H. A. Asia
and N. P. Seeram, J. Nat. Prod., 2014, 77, 2316.
6 R. Rafaeloff-Phail, L.-Y. Ding, L. Conner, W.-K. Yeh,
D. McClure, H.-H. Guo, K. Emerson and H. Brooks, J. Biol.
Chem., 2004, 279, 52934, and related references cited
therein.
7 C. A. Coleman, J. G. Rose and C. J. Murray, J. Am. Chem.
Soc., 1992, 114, 9755.
8 J.-P. Cheng, Y. Lu, X.-Q. Zhu and L.-J. Mu, J. Org. Chem.,
1998, 63, 6108.
cycles (I), (II), and (III) in Scheme 5, respectively. Note that
we used the term free energy change ΔGet to replace the
enthalpy change ΔHet in eqn (9)–(11) for the electron trans-
fer process. The justification of this treatment was that
entropies associated with electron transfer were negligible,
as verified by Arnett et al.: E. M. Arnett, K. Amarnath,
N. G. Harvey and J.-P. Cheng, J. Am. Chem. Soc., 1990, 112,
344.
28 The energetic data herewith was suggested to be used in a
relative sense for the purpose of comparison within a
family. This was because the electrode potentials were
measured under irreversible conditions and some uncer-
tainties in the absolute data were involved (possibly by a
few tens of millivolts). For a method to correct an irrevers-
ible potential to a reversible one, please see ref. 26.
9 J. Yuasa, S. Yamada and S. Fukuzumi, J. Am. Chem. Soc.,
2006, 128, 14938.
10 S. Fukuzumi, H. Kotani, Y.-M. Lee and W. Nam, J. Am. 29 I. H. Lee, E. H. Jeoung and M. M. Kreevoy, J. Am. Chem.
Chem. Soc., 2008, 130, 15134. Soc., 1997, 119, 2722.
11 X.-Q. Zhu, Y.-Y. Mu and X.-T. Li, J. Phys. Chem. B, 2011, 115, 30 X.-Q. Zhu, F.-H. Deng, J.-D. Yang, X.-T. Li, Q. Chen,
14794.
N.-P. Lei, F.-K. Meng, X.-P. Zhao, S.-H. Han, E.-J. Hao and
12 J. A. Birrell and J. Hirst, Biochemistry, 2013, 52, 4048.
Y.-Y. Mu, Org. Biomol. Chem., 2013, 11, 6071.
13 The motifs of these alkaloids belong to iminium ions, 31 A. V. El’tsov and M. Z. Girshovich, Zh. Org. Khim., 1967, 3,
which are likely to accept hydride, hydrogen atoms and 1332.
electrons as supported by: X.-M. Zhang, J. W. Bruno and 32 J.-P. Cheng, K. L. Handoo and V. D. Parker, J. Am. Chem.
E. Enyinaya, J. Org. Chem., 1998, 63, 4671, and nucleophilic
addition reactions in ref. 14–18.
14 J. Elguero, E. G. Gutierrez-Puebla, A. Monge, C. Parco and
M. Ramos, Tetrahedron, 1993, 49, 11305.
Soc., 1993, 115, 2655.
33 F. G. Bordwell and W.-Z. Liu, J. Am. Chem. Soc., 1996, 118,
10819.
34 D. D. M. Wayner, E. Lusztyk, K. U. Ingold and P. Mulder,
J. Org. Chem., 1996, 61, 6430.
15 A. Gonzalez-Ortega, Eur. J. Org. Chem., 2005, 4663.
16 A. Schmidt, T. Habeck, B. Snovydovych and W. Eisfeld, Org. 35 F. G. Bordwell, X.-M. Zhang and J.-P. Cheng, J. Org. Chem.,
Lett., 2007, 9, 3515. 1993, 58, 6410.
17 A. M. Gonzalez-Nogal, M. Calle and P. Cuadrado, 36 B. Gollas and B. Speiser, Angew. Chem., Int. Ed. Engl., 1992,
Eur. J. Org. Chem., 2007, 6089. 31, 332.
18 A. Schmidt, A. Beutler and B. Snovydovych, Eur. J. Org. 37 Y. Li, K. C. Mondal, P. P. Samuel, H.-P. Zhu, C. M. Orben,
Chem., 2008, 4073.
S. Pannerselvam, B. Dittrich, B. Schwederski, W. Kaim,
11484 | Org. Biomol. Chem., 2015, 13, 11472–11485
This journal is © The Royal Society of Chemistry 2015