Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
3
4
5
6
7
2007, 83, 191-197.
tested, the RT was determined 0.6 s for butylamine, 2.7 s for
hexylamine, and 17 s for dodecylamine (Table 2), showing
clear trend of increase with molecular weight. Similar
molecular weight dependence of signal recovery kinetics was
also observed for other chemiresistive sensors26. The slow
recovery of large analytes is mostly due to the more difficult
desorption process. For the similar reason, larger molecules
are easier to condense on surface, resulting in more efficient
increase in sensor signal. For example, under the similar vapor
concentrations, the signal amplitude generated by butylamine
was about 50% smaller than hexylamine. Such molecular
weight effect may be incorporated into the sensor systems to
enhance the differential sensing by comparing the recovery
kinetics.
I. Casero, D. Sicilia, S. Rubio and D. PérDeOz-IB: 1e0n.1d0i3to9/,CW6CaCte0r8237H
Res., 1997, 31, 1985-1995.
M. L. Simenhoff , J. F. Burke , J. J. Saukkonen , A. T. Ordinario
, R. Doty and S. Dunn N. Engl. J. Med., 1977, 297, 132-135.
G. Preti, J. Labows, J. Kostelc, S. Aldinger and R. Daniele, J.
Chromatogr. B Biomed. Sci. Appl., 1988, 432, 1-11.
M. Phillips, K. Gleeson, J. M. B. Hughes, J. Greenberg, R. N.
Cataneo, L. Baker and W. P. McVay, The Lancet, 1999, 353,
1930-1933.
Y. Hu, X. Ma, Y. Zhang, Y. Che and J. Zhao, ACS Sens., 2016, 1,
22-25.
T. Hernández-Jover, M. Izquierdo-Pulido, M. T. Veciana-
Nogués and M. C. Vidal-Carou, J. Agric. Food. Chem., 1996,
44, 2710-2715.
8
9
10 M. Izquierdo-Pulido, T. Hernández-Jover, A. Mariné-Font and
M. C. Vidal-Carou, J. Agric. Food. Chem., 1996, 44, 3159-
3163.
11 S. F. Liu, A. R. Petty, G. T. Sazama and T. M. Swager, Angew.
Chem. Int. Ed., 2015, 54, 6554-6557.
Table 2. Comparison of recovery times (RT) of the TCNQ chemiresistor when
exposed to different amine vapors (from data in Figure 3).
12 S. Rochat and T. M. Swager, Angew. Chem. Int. Ed., 2014, 53,
9792-9796.
13 V. P. Aneja, P. A. Roelle, G. C. Murray, J. Southerland, J. W.
Erisman, D. Fowler, W. A. H. Asman and N. Patni, Atmos.
Environ., 2001, 35, 1903-1911.
14 J. S. Caygill, F. Davis and S. P. J. Higson, Talanta, 2012, 88, 14-
29.
15 Y. E, X. Ma, Y. Zhang, Y. Zhang, R. Duan, H. Ji, J. Li, Y. Che and
J. Zhao, Chem Commun., 2014, 50, 13596-13599.
16 P. Xue, Q. Xu, P. Gong, C. Qian, A. Ren, Y. Zhang and R. Lu,
Chem Commun., 2013, 49, 5838-5840.
17 A. R. Longstreet, M. Jo, R. R. Chandler, K. Hanson, N. Zhan, J.
J. Hrudka, H. Mattoussi, M. Shatruk and D. T. McQuade, J.
Am. Chem. Soc., 2014, 136, 15493-15496.
In summary, we developed a chemiresistive sensor based
on TTF-TCNQ charge transfer material, which demonstrated
dramatically different sensing response towards alkyl and
aromatic amines vapor, with the former to be irreversible (i.e., 18 F. Wang and T. M. Swager, J. Am. Chem. Soc., 2011, 133,
11181-11193.
no signal recovery) and the latter quickly reversible, in the
time range of seconds. This remarkable difference in signal
recovery can be potentially used to discriminate the two types
of amines, helping enhance the differential sensing capability
19 N. A. Rakow and K. S. Suslick, Nature, 2000, 406, 710-713.
20 E. M. Conwell, Phys. Rev. Lett., 1977, 39, 777-780.
21 P. Zhang, Q. Tang, Y. Tong, X. Zhao, G. Wang and Y. Liu, J.
Mater. Chem. C, 2016, 4, 433-439.
of sensor arrays. The unrecoverable response of alkyl amines 22 K.-C. Ho and J.-Y. Liao, Sens. Actuators, B, 2003, 93, 370-378.
23 J.-Y. Liao and K.-C. Ho, Sens. Actuators, B, 2008, 130, 343-
was attributed to the strong interfacial binding through the
charge separation pair, TCNQ––amine+, which can be stabilized
at the polar surface of TTF-TCNQ material. In comparison, the
nonpolar surface of pure TCNQ material does not favor the
350.
24 L. Zang, Y. Che and J. S. Moore, Acc. Chem. Res., 2008, 41,
1596-1608.
25 L. Zang, Acc. Chem. Res., 2015, 48, 2705-2714.
existence of the charge separation state, and the surface 26 C. Wang, B. R. Bunes, M. Xu, N. Wu, X. Yang, D. E. Gross and
L. Zang, ACS Sens., 2016, 1, 552-559.
27 M. J. Cohen, L. B. Coleman, A. F. Garito and A. J. Heeger,
Phys. Rev. B, 1974, 10, 1298-1307.
28 A. Volkov, B. Gorshunov and V. Kozlov, Zh. Eksp. Teor. Fiz,
1987, 92, 1524-1536.
binding is mostly through the neutral donor-acceptor complex,
which is relatively easy to dissociate, resulting reversible
sensing response. This work implies that the interfacial charge
transfer interaction can be employed as a unique design rule
to develop new sensor materials to expand the differential 29 D. Jérome, Chem. Rev., 2004, 104, 5565-5592.
30 30. I. Salzmann, G. Heimel, M. Oehzelt, S. Winkler and N.
Koch, Acc. Chem. Res., 2016, 49, 370-378.
31 T. W. Holcombe, J. E. Norton, J. Rivnay, C. H. Woo, L. Goris, C.
Piliego, G. Griffini, A. Sellinger, J. L. Bredas, A. Salleo and J. M.
Frechet, J. Am. Chem. Soc., 2011, 133, 12106-12114.
32 I. Isenberg and S. L. Baird, J. Am. Chem. Soc., 1962, 84, 3803-
3805.
sensor arrays, in order to enhance the detection selectivity.
This work was supported by the funding from the NSF (CHE
0931466 and CBET 1502433), DHS Science and Technology
Directorate (2009-ST-108-LR0005) and the USTAR Program
33 R. Vlasova, A. Gutman, L. Rozenshtein and N. Kartenko,
physica status solidi (b), 1971, 47, 435-442.
34 J. Xu, Y. Guo and S. J. Shao, Chin. Chem. Lett., 2006, 17, 377-
379.
35. F. Hoshyargar and A. P. O’Mullane, ChemCatChem, 2016, 8,
2335–2339.
Notes and references
1
M. Niculescu, I. Frébort, P. Peč, P. Galuszka, B. Mattiasson
and E. Csöregi, Electroanalysis, 2000, 12, 369-375.
T. Gao, E. S. Tillman and N. S. Lewis, Chem. Mater., 2005, 17,
2904-2911.
2
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins