Page 9 of 11
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
5
For selected references, see: (a) B. Sahoo, M. N. Hopkinson and
F. Glorius, J. Am. Chem. Soc. 2013, 135, 5505−5508; (b) M. N.
Hopkinson, B. Sahoo and F. Glorius, Adv. Synth. Catal. 2014, 356,
1603−1606; (c) G. Bistoni, S. Rampino, N.DSOcaI:f1u0r.i1,0G39. /CCia9SnCca0l1e9o5n4Ei,
D. Zuccaccia, L. Belpassi and F. Tarantelli, Chem. Sci. 2016, 7,
1174−1184.
2794−2800; (c) S. Kim, J. Rojas-Martin and F. D. Toste, Chem. Sci. 19 (a) H. M. Senn and T. Ziegler, Organometallics 2004, 23,
2016, 7, 85−88; (d) V. Gauchot and A.-L. Lee, Chem. Commun.
2016, 52, 10163−10166; (e) V. Gauchot, V.; D. R. Sutherland and
A.-L. Lee, Chem. Sci. 2017, 8, 2885−2889; (f) B. Dong, H. Peng, S.
2980−2988; (b) M. Ahlquist, P. Fristrup, D. Tanner and P.-O.
Norrby, Organometallics 2006, 25, 2066−2073; (c) See also ref.
E. Motika and X. Shi, Chem. Eur. J. 2017, 23, 11093−11099; (g) J. 20 (a) M. Joost, L. Estevez, S. Mallet-Ladeira, K. Miqueu, A.
Xie, K. Sekine, S. Witzel, P. Krämer, M. Rudolph, F. Rominger and
A. S. K. Hashmi, Angew. Chem. Int. Ed. 2018, 57, 16648−16653;
(h) S. Witzel, K. Sekine, M. Rudolph and A. S. K. Hashmi, Chem.
Commun. 2018, 54, 13802−13804.
Amgoune and D. Bourissou, Angew. Chem. Int. Ed. 2014, 53,
14512−14516; (b) A. Zeineddine, F. Rekhroukh, E. D. Sosaꢀ
Carrizo, S. Mallet-Ladeira, K. Miqueu, A. Amgoune and D.
Bourissou, Angew. Chem. Int. Ed. 2018, 57, 1306−1310.
6
(a) M. Joost, A. Zeineddine, L. Estévez, S. Mallet−Ladeira, K. 21 For recent computational studies of gold complexes using the
Miqueu, A. Amgoune and D. Bourissou, J. Am. Chem. Soc. 2014,
136, 14654−14657; (b) A. Zeineddine, L. Estévez, S. Mallet-
Ladeira, K. Miqueu, A. Amgoune and D. Bourissou, Nat.
Commun. 2017, 8, 565−572; (c) M. J. Harper, C. J. Arthur, J.
Crosby, E. J. Emmett, R. L. Falconer, A. J. Fensham-Smith, P. J.
Gates, T. Leman, J. E. McGrady, J. F. Bower and C. A. Russell, J.
Am. Chem. Soc. 2018, 140, 4440−4445.
ETS-NOCV approach, see: (a) P. Jerabek, H. W. Roesky, G.
Bertrand and G. Frenking, J. Am. Chem. Soc. 2014, 136,
17123−17135; (b) E. P. A. Couzijn, Y.-Y. Lai, A. Limacher and P.
Chen, Organometallics 2017, 36, 3205−3214; (c) R.
Bhattacharjee and A. Datta, Chem. Eur. J. 2016, 24,
13636−13464; (d) A. Couce-Rios, A. Lledós, I. Fernández and G.
Ujaque, ACS Catal. 2019, 9, 848−858.
7
8
For oxidant-free gold-catalyzed halogen exchange, C‒N and C‒O 22 ρ values from 0.29 to 1.44 have been reported for Pd-catalyzed
coupling with chelating aryl halides, see: (a) J. Serra, C. J.
Whiteoak, F. Acuna-Pares, M. Font, J. M. Luis, J. Lloret-Fillol and
X. Ribas, J. Am. Chem. Soc. 2015, 137, 13389−13397; (b) J. Serra,
T. Parella and X. Ribas, Chem. Sci. 2017, 8, 946−952.
Some aryl gold(III) species deriving from aryl diazonium salts
have also been isolated thanks to the use of ancillary chelating
cross-couplings of para-substituted iodoarenes: (a) C. Consorti,
G. Ebeling, F. Flores, F. Rominger and J. Dupont, Adv. Synth.
Catal. 2004, 346, 617−624; (b) D. Zim, S. M. Nobre and A. L.
Monteiro, J. Mol. Catal. A: Chem. 2008, 287, 16−23; (c) D. E.
Stephens, J. Lakey-Beitia, A. C. Atesin, T. A. Ateşin, G. Chavez, H.
D. Arman and O. V. Larionov, ACS Catal. 2015, 5, 167−175.
ligands, see: (a) A. Tlahuext-Aca, M. N. Hopkinson, C. G. Daniliuc, 23 A small negative ρ value (–0.25) was reported for the Ullmann
and F. Glorius, Chem. Eur. J. 2016, 22, 11587−11592; (b) L.
Huang, F. Rominger, M. Rudolph and A. S. K. Hashmi, Chem.
Cu-catalyzed coupling of iodoarenes with diarylamines: A. J.
Paine, J. Am. Chem. Soc. 1987, 109, 1496−1502.
Commun. 2016, 52, 6435−6438; (c) E. O. Asomoza-Solís, J. Rojas- 24 N. Chadha and O. Silakari, Eur. J. Med. Chem. 2017, 134,
Ocampo, R. A. Toscano and S. Porcel, Chem. Commun. 2016, 52,
159−184.
7295−7298; (d) A. Tabey, M. Berlande, P. Hermange and E. 25 (a) E. M. Beck and M. J. Gaunt, Top. Curr. Chem. 2010, 292,
Fouquet, Chem. Commun. 2018, 54, 12867−12870.
85−121; (b) N. Lebrasseur and I. Larrosa in Advances in
Heterocyclic Chemistry, Vol. 105 (Ed.: A. Katritzky), Academic
Press, USA, 2012, pp. 309−351; (c) A. H. Sandtorv, Adv. Synth.
Catal. 2015, 357, 2403−2435; (d) L. Ping, D. S. Chung, J. Bouffard
and S. G. Lee, Chem. Soc. Rev. 2017, 46, 4299−4328.
9
(a) M. Joost, L. Estévez, K. Miqueu, A. Amgoune and D.
Bourissou, Angew. Chem. Int. Ed. 2015, 54, 5236−5240; (b) J. H.
Teles, Angew. Chem. Int. Ed. 2015, 54, 5556−5558.
10 Little is known yet about the effects of aryl electronics in Au(III)
and Au(I)/Au(III) reactivity. See: (a) ref. 3b; (b) K. Kang, S. Liu, T. 26 For transition-metal-free processes using highly electrophilic
Xu, D. Wang, X. Leng, R. Bai, Y. Lan and Q. C. Shen,
Organometallics 2017, 36, 4727−4740; (c) L. Rocchigiani, J.
Fernandez-Cestau, P. H. M. Budzelaar and M. Bochmann, Chem.
Eur. J. 2018, 24, 8893−8903.
arylating substrates (ie diazonium salts) or highly reactive
metalating reagents (such as potassium tert-butylate or lithium
tetramethylpiperidine), see: (a) L. Ackermann, M. Dell’Acqua, S.
Fenner, R. Vicente and R. Sandmann, Org. Lett. 2011, 13,
2358−2360; (b) Y.-P. Zhang, X.-L. Feng, Y.-S. Yang and B.-X. Cao,
Tetrahedron Lett. 2016, 57, 2298−2302; (c) T. Truong and O.
Daugulis, J. Am. Chem. Soc. 2011, 133, 4243−4245; (d) J. Chen
and J. Wu, Angew. Chem. Int. Ed. 2017, 56, 3951−3955.
11 (a) J. F. Hartwig, Organotransition Metal Chemistry: From
Bonding to Catalysis; Universtity science books ed.; Sausalito,
CA, 2009; (b) K. C. Lam, T. B. Marder and Z. Lin, Organometallics
2007, 26, 758−760.
12 R. J. Lundgren, K. D. Hesp and M. Stradiotto, Synlett, 2012, 17, 27 (a) X. Wang, B. S. Lane and D. Sames, J. Am. Chem. Soc. 2005,
2443–2458.
127, 4996−4997; (b) X. Wang, D. V. Gribkov and D. Sames, J. Org.
Chem. 2007, 72, 1476−1479; (c) N. R. Deprez, D. Kalyani, A.
Krause and M. S. Sanford, J. Am. Chem. Soc. 2006, 128,
4972−4973; (d) H. P. L. Gemoets, I. Kalvet, A. V. Nyuchev, N.
Erdmann, V. Hessel, F. Schoenebeck and T. Noel, Chem. Sci.
2017, 8, 1046−1055; (e) C. Sollert, K. Devaraj, A. Orthaber, P. J.
Gates and L. T. Pilarski, Chem. Eur. J. 2015, 21, 5380−5386.
13 M. S. Messina, J. M. Stauber, M. A. Waddington, A. L. Rheingold,
H. D. Maynard and A. M. Spokoyny, J. Am. Chem. Soc. 2018, 140,
7065−7069.
14 See Supporting Information.
15 H. Hansch, A. Leo and R. W. Taft, Chem. Rev. 1991, 91, 165−195.
16 (a) C. Amatore and F. Pflüger, Organometallics 1990, 9,
2276−2282; (b) L. A. Perego, P.-A. Payard, B. Haddou, I. Ciofini 28 (a) B. S. Lane, M. A. Brown and D. Sames, J. Am. Chem. Soc.
and L. Grimaud, Chem. Eur. J. 2018, 24, 2192−2199.
17 Same calculations have been performed on the (N,N) and (P,P)
chelated gold complexes6a,c which displayed preference for
electron-rich aryl iodides. Similar results were obtained with
electron transfer from iodobenzene to the (L,L)Au+ fragment at
the transition state of oxidative addition, and prevalent
substrate to metal donation.14
2005, 127, 8050−8057; (b) D. R Stuart and K. Fagnou, Science
2007, 316, 1172−1175; (c) R. J. Phipps, N. P. Grimster and M. J.
Gaunt, J. Am. Chem. Soc. 2008, 130, 8172−8174; (d) B. Join, T.
Yamamoto and K. Itami, Angew. Chem. Int. Ed. 2009, 48,
3644−3647; (e) K. Yamaguchi, H. Kondo, J. Yamaguchi and K.
Itami, Chem. Sci. 2013, 4, 3753−3757; (f) S. Perato, B. Large, Q.
Lu, A. Gaucher and D. Prim, ChemCatChem 2017, 9, 389−392.
18 (a) D. Sorbelli, L. Belpassi, F. Tarantelli and P. Belanzoni, Inorg. 29 For examples of indole arylation at remote positions, see: (a) Y.
Chem. 2018, 57, 6161−6175; (b) C. A. Gaggioli, L. Belpassi, F.
Tarantelli and P. Belanzoni, Chem. Commun. 2017, 53,
Yang and Z. Shi, Chem. Commun. 2018, 54, 1676−1685; (b) J.
Kalepu, P. Gandeepan, L. Ackermann and L. T. Pilarski, Chem. Sci.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins