1234
V. T. Perchyonok et al.
LETTER
Table 1 Radical Deprotection of Allyl Ester 1 under Various Con-
Table 2 Radical Deprotection of Various Allyl Esters in the Pres-
ditions
ence of AIBN (10 wt%) in Water or Benzene
Entry
Additive
AIBN
Solvent
C6H6
H2O
Yield (%)a
96
Entry
1
R¢ of substrate
Solvent
Yield (%)
1
2
3
4
5
6
7
H2O
C6H6
75
quant
AIBN
83
V-501b
H2O
93
n.r.c
n.r.c
n.r.c
n.r.c
H2O
C6H6
70
quant
none
C6H6
H2O
2
3
none
O
O
AIBN, PhOHd
AIBN, PhOHd
C6H6
H2O
H2O
C6H6
quant
quant
a Yields were determined by 1H NMR analysis of the crude reaction
mixture after evaporation of the solvent.
b 4,4¢-Azobis(4-cyanopentanoic acid).
c No reaction; only starting material present.
d A stoichiometric amount of phenol was added to the reaction mix-
ture.
H2O
C6H6
91
86
4
5
duce corresponding acylperoxide 5, which subsequently
fragments into the corresponding acid 6, acrolein 7, and
water. The proposed mechanism is supported by experi-
mental evidence and several important literature prece-
dences.18–21
H2O
C6H6
78
quant
O
In conclusion we have established a facile, efficient free-
radical method for the selective deallylation22 of esters in
aqueous media. This method represents an environmen-
tally friendly alternative to existing methodologies.
H2O
C6H6
quant
quant
6
HN
Fmoc
General Procedure
H2O
C6H6
65
quant
To the allyl ester (0.2 mmol) in nondegassed H2O (5 mL) was added
AIBN (10 wt%) and the reaction mixture was stirred at 65–70 °C
for 3 h or until completion of the reaction as indicated by TLC anal-
ysis. After completion the solvent was removed in vacuo and the re-
action analyzed by H NMR spectroscopy. ESI-MS was used to
confirm formation of the deallylated product.
7
8
O
1
H2O
C6H6
76
quant
Acknowledgment
We wish to thank the Australian Research Council and Monash’s
Centre of Green Chemistry for their support. Funding support of the
CSIRO Food Futures Flagship is also gratefully acknowledged.
(5) (a) Jeffrey, N. P. D.; McCombie, S. W. J. Org. Chem. 1982,
47, 587. (b) Deziel, R. Tetrahedron Lett. 1987, 28, 4371.
(6) Kunz, H.; Waldmann, H. Helv. Chim. Acta 1985, 68, 618.
(7) Ho, T.-L. Synth. Commun. 1978, 8, 359.
(8) Schmid, C. R. Tetrahedron Lett. 1992, 32, 757.
(9) Cossy, J.; Albouy, A.; Scheloske, M.; Pando, D. G.
Tetrahedron Lett. 1994, 35, 1539.
(10) Chavan, S. P.; Zubaidha, P. K.; Dantale, S. W.; Keshavaraja,
A.; Ramaswamy, A. V.; Ravindranathan, T. Tetrahedron
Lett. 1996, 37, 237.
(11) Gajare, A. S.; Shingare, M. S.; Kulkarni, V. R.; Barhate, N.
B.; Wakharkar, R. D. Synth. Commun. 1998, 28, 25.
(12) Gajare, A. S.; Shaikh, N. S.; Bonde, B. K.; Deshpande, V. H.
J. Chem. Soc., Perkin Trans. 1 2000, 639.
References and Notes
(1) (a) Green, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 2nd ed.; John Wiley and Sons Inc.: New
York, 1991. (b) Kocienski, P. J. Protecting Groups;
Thieme: Stuttgart, 1994. (c) Nelson, T. D.; Crouch, R. D.
Synthesis 1996, 1031. (d) Nicolaou, K. C.; Sorensen, E. J.
Classics in Total Synthesis; Wiley-VCH: Weinheim, 1996.
(2) Friedrich-Bochnitschek, S.; Waldmann, H.; Kunz, H. J. Org.
Chem. 1989, 54, 751.
(3) Jungheim, L. N. Tetrahedron Lett. 1989, 30, 1889.
(4) Zang, H. X.; Guibe, F.; Balaviome, G. Tetrahedron Lett.
1988, 29, 623.
(13) (a) Barrett, A. G. M.; Lebold, S. A.; Zang, X. A. Tetrahedron
Lett. 1989, 30, 7317. (b) Garay, R. O.; Cabaleiro, M. C.
J. Chem. Soc., Perkin Trans. 2 1988, 1643.
Synlett 2008, No. 8, 1233–1235 © Thieme Stuttgart · New York