Scheme 2 Reagents and conditions: (a) adipoyl chloride, CHCl3, rt, 89%, (b) trifluoroacetic acid, rt, (c) methyl 4-formylbenzoate, CHCl3, reflux, 69% in two
steps, (d) LiAlH4, THF, reflux, (e) HCl, (f) NH4PF6, 60% in three steps, (g) 12 equivalents of DB24C8, DMBA, 20 mol% of Bu3P, CH2Cl2–CH3CN (4+1),
rt, 24 h, 72%.
Aplin, T. D. W. Claridge, T. Goodson III, A. C. Maciel, G. Rumbles, J.
F. Ryan and H. L. Anderson, J. Chem, Soc., Perkin Trans. 1, 1998, 2383;
(j) M. R. Craig, T. D. W. Claridge, M. G. Hutchings and H. L. Anderson,
Chem. Commun., 1999, 1537; (k) Y. Furusho, A. Tsuboi, N. Kihara and
T. Takata, Chem. Lett., 2000, 18.
3 (a) Higher-order rotaxanes: N. Solladié, J.-C. Chambron, C. O.
Dietrich-Buchecker and J.-P. Sauvage, Angew. Chem., Int. Ed., 1996,
35, 906; (b) P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M.
T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N.
Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, J. Am Chem.
Soc., 1996, 118, 4931; (c) D. B. Amabilino, P. R. Ashton, V. Balzani, C.
L. Brown, A. Credi, J. M. J. Fréchet, J. W. Leon, F. M. Raymo, N.
Spencer. J. F. Stoddart and M. Venturi, J. Am. Chem. Soc., 1996, 118,
12012; (d) N. Solladié, J.-C. Chambron and J.-P. Sauvage, J. Am. Chem.
Soc., 1999, 121, 3684.
4 (a) M. Tamura, D. Gao and A. Ueno, Chem, Eur, J., 2001, 7, 1390; (b)
H. Shigekawa, K. Miyake, J. Sumaoka, A. Harada and M. Komiyama,
J. Am. Chem. Soc., 2000, 122, 5411.
Fig. 1 ORTEP drawing of [3]rotaxane 3c. Hydrogens, counter anions
(PF62) and solvents (CHCl3 and EtOH) are omitted for clarity.
spectra. 7 could also be simply isolated by precipitation into
MeOH in 58% yield. The simple and easy work-up is an
important feature of this method.
In summary, we have demonstrated the practical and high-
yielding synthesis of [3]- and [5]-rotaxanes consisting of crown
ether and oligoammonium salt. The method described here can
be applied to the synthesis of higher rotaxanes without
significant decrease in yield. The rotaxanes thus obtained can be
modified by neutralization of the ammonium group by acyla-
tion,6 leading to the formation of neutral rotaxanes and it is
currently under active investigation.
5 H. Kawasaki, N. Kihara and T. Takata, Chem. Lett., 1999, 1015.
6 N. Kihara, Y. Tacibana, H. Kawasaki and T. Takata, Chem Lett., 2000,
506.
7 3c: mp 174–175 °C; IR (KBr) 3164, 1713, 1505, 1253, 1213, 840 cm21
;
1H NMR (400 MHz, DMSO-d6) d 7.62 (s, 4H), 7.46 (d, J 8.4 Hz, 4H),
7.32 (s, 2H), 7.06 (br s, 4H), 6.96–6.93 (m, 8H), 6.89–6.85 (m, 8H), 5.29
(s, 4H), 4.56 (t, J 5.6 Hz, 4H), 4.19–4.15 (m, 8H), 4.07–4.03 (m, 8H),
3.81–3.71 (m, 16H), 3.59–3.55 (m, 8H), 3.42–3.37 (m, 8H), 2.83 (br s,
4H), 2.35 (s, 12H), 1.07 (br s, 4H), 0.43 (br s, 4H); FAB-MS (matrix; m-
NBA):
m/z
1664
[M 2 PF6]+.
Anal.
Calc.
for
This work is partially supported by JSPS Research Fellow-
ships for Young Scientists (N. W).
C88H114F12N2O20P2·CHCl3: C 55.41, H 6.01, N 1.45. Found: C 55.39,
H 5.95, N 1.47%. 7: mp 219–222 °C; IR (KBr) 3448, 1718, 1593, 1506,
1254, 1124, 841; 1H NMR (400 MHz, CD3CN) d 7.65 (s, 4H), 7.40 (d,
J 8.0 Hz, 4H), 7.29 (s, 2H), 7.27 (d, J 8.0 Hz, 4H), 7.06 (br s, 4H,),
6.91–6.86 (m, 32 H), 6.60 (br s, 4H), 5.21 (s, 4H), 4.57 (t, J 6.7 Hz, 4H),
4.12–4.03 (m, 32H), 3.81–3.77 (m, 32H), 3.65 (s, 16H), 3.62–3.58 (m,
16H), 3.12–3.04 (m, 12H), 2.36 (s, 12H), 1.17 (br s, 12H), 0.79 (br s,
4H), 0.68 ((br s, 8H); FAB-MS (matrix; m-NBA): m/z 3050
[M 2 PF6]+; Anal. Calc. for C148H206F24N4O36P4·H2O: C 55.29, H
6.52, N 1.74. Found: C 55.05, H 6.59, N 1.68%.
Notes and references
1 (a) Recent reviews: J.-C. Chambron and J.-P. Sauvage, Chem. Eur. J.,
1998, 4, 1362; (b) S. A. Nepogodiev and J. F. Stoddart, Chem. Rev.,
1998, 98, 1959; (c) A. Harada, Acta Polym., 1998, 49, 3; (d) Molecular
Catenanes, Rotaxanes and Knots, ed. J.-P. Sauvage and C. O. Dietrich-
Buchecker, Wiley-VCH, Weinheim, 1999; (e) V. Balzani, A. Credi, F.
M. Raymo and J. F. Stoddart, Angew. Chem., Int. Ed., 2000, 39,
3349.
2 (a) [3]rotaxanes: D. B. Amabilino, P. R. Ashton, M. Belohradsky, F. M.
Raymo and J. F. Stoddart, J. Chem. Soc., Chem. Commun., 1995, 747;
(b) D. B. Amabilino, P. R. Ashton, M. Belohradsky, F. M. Raymo and
J. F. Stoddart, J. Chem. Soc., Chem. Commun., 1995, 751; (c) F. Vögtle,
T. Dünnwald, M. Händel, R. Jäger, S. Meier and G. Harder, Chem. Eur.
J., 1996, 2, 640; (d) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. A.
Tasker, A. J. P. White and D. J. Williams, Chem. Eur. J., 1996, 2, 729;
(e) P. R. Ashton, P. T. Glink, J. F. Stoddart, S. Menzer, P. A. Tasker, A.
J. P. White and D. J. Williams, Tetrahedron Lett., 1996, 34, 6217; (f) S.
Anderson and H. L. Anderson, Angew. Chem., Int. Ed., 1996, 35, 1956;
(g) A. G. Kolchinski, N. W. Alcock, R. A. Roesner and D. H. Busch,
Chem. Commun., 1998, 1437; (h) R. Schmieder, G. Hübner, C. Seel and
F. Vögtle, Angew. Chem. Int. Ed., 1999, 38, 3528; (i) S. Anderson, R. T.
8 Ka Values of this system could not be determined by NMR experiments
because the complexes could not be distinguished from each other.
9 (a) T. Takata, H. Kawasaki, S. Asai, N. Kihara and Y. Furusho, Chem.
Lett., 1999, 111; (b) T. Takata, H. Kawasaki, S. Asai, Y. Furusho and N.
Kihara, Chem. Lett., 1999, 223.
10 Crystal data for [3]rotaxane 3c: C90H118F12N2O20.50P2Cl3,
M
=
=
1952.21, monoclinic, space group C2/c, a 41.6032(9), b
=
16.1461(3), c = 32.8652(7) Å, Z = 8, V = 19740.3(6) Å3, Dc = 1.314
cm23, m(Mo-Ka) = 0.214 Å, 76981 reflections were measured, 16980
were unique. R1 = 0.097 and wR2 = 0.288 for 16950 reflection with F
> 3s(F). The structure was solved and refined on F squared using
cc/b2/b207872d/ for crystallographic data in CIF or other electronic
format.
CHEM. COMMUN., 2002, 2720–2721
2721