M. Couturier et al. / Tetrahedron Letters 42 (2001) 2763–2766
2765
17. Gomez-Martinez, P.; Dessolin, M.; Guibe, F.; Albericio,
F. J. Chem. Soc., Perkin Trans. 1 1999, 20, 2871.
18. A representative experimental procedure is as follows: To
a mixture of trans-stilbene (9.01 g, 50.0 mmol) and 10%
palladium-on-carbon (740 mg, 50% wet) in methanol (15
mL) was added a solution of borane t-butylamine (1.74 g,
20.0 mmol) in methanol (15 mL) and the vessel was
immediately sealed and heated to 30°C. Upon reaction
completion (4 h, monitored by a constant pressure read-
ing), the reaction mixture was cooled to room tempera-
ture, filtered over Celite, rinsed with methanol, and
concentrated under reduced pressure. Purification of the
crude material by silica gel chromatography using
dichloromethane gave bibenzyl (8.46 g, 93%) as a white
crystalline solid.
19. It is noteworthy that the rates of reductions are generally
slower than extrusion of hydrogen from the catalytic
surface. As a consequence, the pressure of hydrogen
increases in the reaction vessel and the requisite equiva-
lent of hydrogen is ultimately consumed in the time
indicated in the Table 1.
20. The current methodology is not limited to aromatic sub-
stitution since 1-hexene was utilized as hydrogen scav-
enger in the palladium-catalyzed decomplexation of
borane–benzylamine complexes (see Ref. 13).
lead to further palladium-catalyzed applications of
borane–amine complexes.
Acknowledgements
The authors thank Professors Dave Collum (Cornell)
and Steven Ley (Cambridge) for insightful discussions.
References
1. For reviews, see: (a) Carboni, B.; Monnier, L. Tetra-
hedron 1999, 55, 1197; (b) Hutchins, R. O.; Learn, K.;
Nazer, B.; Pytlewski, D.; Pelter, A. Org. Prep. Proced.
Int. 1984, 16, 335; (c) Lane, C. F. Aldrichim. Acta 1973,
6, 51; (d) Follet, M. Chem. Ind. 1986, 123.
2. Yee, N. K.; Nummy, L. J.; Byrne, D. P.; Smith, L. L.;
Roth, G. P. J. Org. Chem. 1998, 63, 326.
3. Aldrich Chemical Company, Milwaukee, WI.
4. Callery Chemical Company, Evans City, PA.
5. Paquette, L. A. Encyclopedia of Reagents for Organic
Synthesis; John Wiley & Sons: New York, 1995; pp.
634–644.
6. Pelter, A.; Smith, K. In Comprehensive Organic Chem-
istry; Nedville, J. D., Ed.; Pergamon: Oxford, 1979; Vol.
3, pp. 695–790 Chapter 14.2.
7. (a) Kikugawa, Y.; Ogawa, Y. Chem. Pharm. Bull. 1979,
27, 2405; (b) Kikugawa, Y.; Saito, K.; Yamada, S.-i.
Synthesis 1978, 447; (c) Berger, J. G. Synthesis 1974, 508;
(d) Perkins, W.; Wadsworth, D. J. Org. Chem 1972, 37,
800; (e) White, S.; Kelly, H. J. Am. Chem. Soc. 1970, 92,
4203; (f) Billman, J. H.; McDowell, J. W. J. Org. Chem.
1961, 26, 1437.
8. (a) Dehmlow, E. V.; Niemann, T.; Kraft, A. Synth.
Commun. 1996, 26, 1467; (b) Jones, W. J. Am. Chem.
Soc. 1960, 82, 2528.
9. Babler, J. H.; Sarussi, S. J. J. Org. Chem. 1983, 48, 4416.
10. (a) Brown, H. C.; Kanth, J. V. B.; Dalvi, P. V.; Zai-
dlewicz, M. J. Org. Chem. 2000, 65, 4655; (b) Brown, H.
C.; Kanth, J. V. B.; Dalvi, P. V.; Zaidlewicz, M. J. Org.
Chem. 1999, 64, 6263.
11. (a) Soderquist, J. A.; Medina, J. R.; Huertas, R. Tetra-
hedron Lett. 1998, 39, 6119; (b) Soderquist, J. A.; Huer-
tas, R.; Medina, J. R. Tetrahedron Lett. 1998, 39, 6123.
12. (a) Brown, H. C.; Kanth, J. V. B.; Zaidlewicz, M. J. Org.
Chem. 1998, 63, 5154; (b) Brown, H. C.; Zaidlewicz, M.;
Dalvi, P. V. Organometallics 1998, 17, 4202; (c) Salunkhe,
A. M.; Burkhardt, E. R. Tetrahedron Lett. 1997, 38,
1519; (d) Narayana, C.; Periasamy, M. J. Organomet.
Chem. 1987, 323, 145; (e) Brown, H. C.; Chandrasekha-
ran, J. J. Am. Chem. Soc. 1984, 106, 1863.
21. Kikugawa, Y.; Saito, K.; Yamada, S. Synthesis 1978, 447.
22. Sajiki, H.; Hattori, K.; Hirota, K. Chem. Commun. 1999,
1041.
23. Experimental procedure: To an ice-cold solution of N,O-
bis(benzoyl)-3-pyrrolidinol (1.98 g, 6.68 mmol) in tetra-
hydrofuran (15 mL), was added
a
solution of
borane–tetrahydrofuran (13.4 mL, 13.4 mmol, 1 M in
THF) and the resulting mixture was stirred for 1 h at
room temperature. The reaction was then cooled to 0°C,
quenched with methanol (10 mL) and immediately con-
centrated to dryness at 25°C under reduced pressure.
Purification of the residual material by silica gel chro-
matography using 10% ethyl acetate in hexane provided a
diastereomeric mixture of borane–amine complexes (1.83
g, 93%) as a white crystalline solid. Major isomer: 1H
NMR (400 MHz, CDCl3) d 7.76 (d, J=8.0 Hz, 2H), 7.55
(t, J=8.0 Hz, 1H), 7.45–7.25 (m, 7H), 5.55 (brs, 1H), 4.16
(s, 2H), 3.65 (dd, J=6.0, 12.5 Hz, 1H), 3.30–3.15 (m,
3H), 2.83 (m, 1H), 2.20–1.40 (m, 4H); 13C NMR (100
MHz, CDCl3) d 165.96, 133.55, 132.99, 131.55, 129.77,
129.63, 129.29, 128.70, 128.61, 74.61, 66.17, 63.52, 57.19,
1
31.01. Minor isomer: H NMR (400 MHz, CDCl3) d 8.03
(d, J=8.5 Hz, 2H), 7.56 (t, J=8.5 Hz, 1H), 7.45–7.20 (m,
7H), 5.30 (m, 1H), 4.09 (s, 2H), 3.55 (dd, J=7.0, 13.0 Hz,
1H), 3.25–3.15 (m, 2H), 3.12 (m, 1H), 2.37 (m, 1H),
2.25–1.60 (m, 4H); 13C NMR (100 MHz, CDCl3) d
166.52, 133.56, 132.65, 131.80, 130.02, 129.75, 129.60,
128.91, 128.68, 73.31, 66.62, 63.91, 58.02, 31.19.
24. Experimental procedure: To a mixture of borane–amine
complex 2 (2.95 g, 10 mmol) and 10% palladium-on-car-
bon (1.18 g, 50% wet) was added methanol (30 mL). The
reaction vessel was quickly sealed and the contents stirred
at room temperature for 4 days. The resulting reaction
mixture was filtered over Celite, rinsed with methanol
and concentrated to dryness. Flash chromatography of
the residual material using 5% methanol in
dichloromethane provided the desired secondary amine
13. Couturier, M.; Tucker, J. L.; Andresen, B. M.; Dube, P.;
Negri, J. T. Org. Lett. 2001, 3, 465.
14. Couturier, M.; Andresen, B. M.; Tucker, J. L.; Dube´, P.;
Breneck, S.; Negri, J. T. Tetrahedron Lett. 2001, 42, 2285.
15. David, H.; Dupuis, L.; Guillerez, M.-G.; Guibe´, F. Tet-
rahedron Lett. 2000, 41, 3335.
16. Lipshutz, B. H.; Buzard, D. J.; Vivian, R. W. Tetra-
hedron Lett. 1999, 40, 6861.
.