Derbesy, D. N. Harpp, B. Rather and G. Carroll, Sulfur Lett., 1992, 35,
199.
5 (a) D. Cavallini, C. de Marco, B. Mondovì and B. G. Mori,
Enzymologia, 1960, 22, 161; (b) J. Loiselet and F. Chatagner, Bull. Soc.
Chim. Biol., 1966, 48, 595; (c) D. Cavallini, G. Federici, E. Barboni and
M. Marcucci, FEBS Lett., 1970, 10, 125; (d) D. Cavallini, G. Federici
and E. Barboni, Eur. J. Biochem., 1970, 14, 169; (e) A. Finazzi Agrò, G.
Federici, C. Giovagnoli, C. Cannella and D. Cavallini, Eur. J. Biochem.,
1972, 28, 89; (f) G. Federici, S. Duprè, R. M. Matarese, S. P. Solinas and
D. Cavallini, Int. J. Pept. Protein Res., 1977, 10, 185; (g) T. Fujii, M.
Maeda, H. Mihara, T. Kurihara, N. Esaki and Y. Hata, Biochemistry,
2000, 39, 1263.
6 (a) C. Cannella, L. Pecci, A. Finazzi Agrò, G. Federici, B. Pensa and D.
Cavallini, Eur. J. Biochem., 1975, 55, 285; (b) G. M. Lacourciere and T.
C. Stadtman, J. Biol. Chem., 1998, 273, 30921. See also ref. 5g.
7 (a) S. J. Behroozi, W. Kim and K. S. Gates, J. Org. Chem., 1995, 60,
3964; (b) K. Mitra, W. Kim, J. S. Daniels and K. S. Gates, J. Am. Chem.
Soc., 1997, 119, 11691; (c) K. S. Gates, Chem. Res. Toxicol., 2000, 13,
953, and references cited therein.
Scheme 2 Reagents and conditions: i, Et3N, PhH, rt, 5 min; ii, aq. NH4Cl;
iii, evaporation in the presence of Et3N; iv, Ph3SnCl, Et3N, PhH, rt, 1 h.
Yields are calculated from 1H NMR integral ratios.
8 (a) G. Polidoro, P. De Cicco, S. Di Luzio and G. Federici, Boll. Soc. Ital.
Biol. Sper., 1979, 55, 2346; (b) C. Köllemann, D. Obendorf and F.
Sladky, Phosphorus, Sulfur Relat. Elem., 1988, 38, 69.
9 F. Freeman, B.-G. Huang and R. I.-S. Lin, Synthesis, 1994, 699.
1
10 3: mp 177–180 °C (CH2Cl2–hexane). H NMR (CDCl3, 400 MHz) d
2.50 (s, 3H), 5.37 (s, 1H), 6.98–7.05 (m, 6H), 7.35–7.40 (m, 3H),
7.47–7.51 (m, 3H); 13C NMR (CDCl3, 100.6 MHz) d 29.8, 54.1, 64.9,
123.5, 123.7, 125.0, 125.9, 144.1, 145.2, 192.1; IR (KBr) 1700 (CNO)
cm21. Anal. Calc. for C22H16OSSe: C, 64.86; H, 3.96. Found: C, 64.80;
H, 3.92%.
11 In this one-pot reaction, we have prepared (1-Ad)CH2SeSAc and
(1-Ad)CH(CH3)SeSAc (1-Ad = 1-adamantyl).
12 2: pale yellow plates, mp 170–172 °C decomp (CH2Cl2–hexane). 1H
NMR (CDCl3, 400 MHz) d 2.64 (s, 1H, SH), 5.38 (s, 1H), 7.00–7.08 (m,
6H), 7.36–7.42 (m, 3H), 7.49–7.54 (m, 3H); 13C NMR (CDCl3, 100.6
MHz) d 54.0, 61.1, 123.6, 123.8, 125.0, 125.7, 144.1, 145.8; IR (KBr)
2520 cm21. Anal. Calc. for C20H14SSe: C, 65.75; H, 3.86. Found: C,
65.73; H, 3.89%. Crystal data: C20H14SSe, Mw 365.36, pale yellow
¯
plate, 0.24 3 0.16 3 0.08 mm3, triclinic, space group P1, a = 8.181(2),
Fig. 2 UV-vis spectra of triptycene-9-thioselenenic acid (2) and di-
(triptycene-9-selenenyl) sulfide (6).
b = 8.217(1), c = 13.175(3) Å, a = 82.53(1), b = 72.58(1), g =
67.82(1)°, V = 782.4(2) Å3, Z = 2, rcalc = 1.551 g cm23, m(CuKa) =
4.42 mm21. Mac Science MXC3KHF diffractometer with graphite-
monochromated CuKa radiation (l = 1.54178 Å), q/2q scans method
in the range 3° < 2q < 140° (29 @h @9, 0 @k @10, 215 @l @16),
2994 independent reflections. The structure was solved with direct
methods (SIR9213), and refined with full-matrix least-squares
(SHELXL-9714) using all independent reflections for 256 parameters.
Absorption correction was done by a psi-scan method. The non-
hydrogen atoms were refined anisotropically: R1 = 0.0303 (I > 2s(I),
2822 reflections), wR2 = 0.0860 (for all), GOF = 1.05; max/min
residual density = 0.454/20.452 e Å23. CCDC reference number
tallographic data in CIF or other electronic format.
methane. The absorption of 2 ceased approximately at 360 nm,
while 6 has a broad absorption from 285 to 360 nm with the
molecular absorption coefficient (e/103 cm2 mol21) ≈ 1000.
Anyway, we did not observe an explicit absorption maximum
around 375 nm. This might be attributed to the contrasting
character of the substituents: the more sterically demanding,
hydrophobic 9-tripycyl group and the much less sterically
demanding, hydrophilic 2-amino-3-propionyl (Cys) group. We
are therefore now investigating the preparation of thioselenenic
acids having groups derived from the Cys group or alkyl
substituents structurally simpler than the 9-triptycyl group.
13 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl.
Crystallogr., 1993, 26, 343.
14 G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refine-
ment, Göttingen University, Germany, 1997.
Notes and references
1 A. Claiborne, J. I. Yeh, T. C. Mallett, T. J. Luba, E. J. Crane III, V.
Charrier and D. Parsonage, Biochemistry, 1999, 38, 15407.
2 (a) H. E. Ganther, Chem. Scr., 1975, 8A, 79; (b) G. Mugesh and W.-W.
du Mont, Chem. Eur. J., 2001, 7, 1365.
15 6: pale yellow crystals, mp 345–346 °C decomp (hexane–CH2Cl2). 1H
NMR (CDCl3, 300 MHz) d 5.46 (s, 2H), 7.11 (pseudo d of quintet, J =
1.5, 7.4 Hz, 12H), 7.46 (dd, J = 1.5, 7 Hz, 6H), 7.76 (dd, J = 1.5, 8 Hz,
6H); 13C NMR (CDCl3, 100.6 MHz) d 54.2, 65.2, 123.7, 124.4, 125.1,
125.9, 144.7, 145.6. Anal. Calc. for C40H22SSe2: C, 68.96; H, 3.76.
Found: C, 68.31; H, 3.68%.
3 (a) K. Goto and R. Okazaki, Liebgs Ann./Recueil, 1997, 2393; (b) K.
Goto, M. Nagahama, T. Mizushima, K. Shimada, T. Kawashima and R.
Okazaki, Org. Lett., 2001, 3569; (c) A. Ishii, S. Matsubayashi, T.
Takahashi and J. Nakayama, J. Org. Chem., 1999, 64, 1084, and
references cited therein.
4 (a) J. Tsurugi and T. Nakabayashi, J. Org. Chem., 1959, 24, 807; (b) T.
Nakabayashi, J. Tsurugi and T. Yabuta, J. Org. Chem., 1964, 29, 1236;
(c) S. Kawamura, T. Kitao, T. Nakabayashi, T. Horii and J. Tsurugi, J.
Org. Chem., 1968, 33, 1179; (d) J. Tsurugi, Y. Abe and S. Kawamura,
Bull. Chem. Soc. Jpn., 1970, 43, 1890; (e) J. Tsurugi, Y. Abe, T.
Nakabayashi, S. Kawamura, T. Kitao and M. Niwa, J. Org. Chem.,
1970, 35, 3263; (f) D. N. Harpp, D. K. Ash, T. G. Back and J. G.
Gleason, Tetrahedron Lett., 1970, 3551; (g) S. Kawamura, T. Horii, T.
Nakabayashi and M. Hamada, Bull. Chem. Soc. Jpn., 1975, 48, 2993; (h)
N. E. Heimer, L. Field and R. A. Neal, J. Org. Chem., 1981, 46, 1374;
(i) N. E. Heimer and L. Field, J. Org. Chem., 1984, 49, 1446; (j) N. E.
Heimer, L. Field and J. A. Waites, J. Org. Chem., 1985, 50, 4164; (k) G.
16 The structures of 7 and 8 were determined by X-ray crystallography.
CCDC reference numbers 191692 (7) and 191693 (8). 7: yellow
crystals, mp 176–178 °C decomp (Et2O–hexane). 1H NMR (CDCl3, 200
MHz) d 5.29 (s, 1H), 6.74 (dt, J = 1, 8 Hz, 3H), 6.93 (dt, J = 1, 7 Hz,
3H), 7.30 (dd, J = 1, 7 Hz, 3H), 7.43–7.55 (m, 12H), 7.74–7.84 (m, 6H,
accompanying satellite signals, J = 55 Hz, due to 117Sn and 119Sn); 13
C
NMR (CDCl3, 75.5 MHz) d 54.0, 61.7, 123.1, 124.6, 124.8, 125.4,
129.1, 130.2, 137.0, 137.1, 144.4, 145.4. Anal. Calc. for C38H28SSeSn:
C, 63.89; H, 3.95. Found: C, 63.71; H, 3.90. 8: colorless cubes, mp
253–255 °C (hexane–CH2Cl2). 1H NMR (CDCl3, 400 MHz) d 5.28 (s,
1H), 6.64 (dt, J = 1, 8 Hz, 3H), 6.87 (dt, J = 1, 8 Hz, 3H), 7.20—7.34
(m, 12H), 7.40 (dd, J = 1, 8 Hz, 6H, accompanying satellite signals, J
= 55 Hz, due to 117Sn and 119Sn), 7.79 (d, J = 7.5 Hz, 3H); 13C NMR
(CDCl3, 100.6 MHz) d 54.1, 61.7, 122.6, 124.5, 125.36, 125.41, 128.6,
129.4, 136.8, 138.2, 144.8, 146.4. Anal. Calc. for C38H28SeSn: C, 66.89;
H, 4.14. Found: C, 66.65; H, 4.04%.
CHEM. COMMUN., 2002, 2810–2811
2811