394
Y. Qi et al. / Reactive & Functional Polymers 71 (2011) 390–394
Acknowledgements
This work is supported by the National Natural Science Founda-
tion of China(20876101, 20902065), the Project of Ministry of Edu-
cation (20070285003), the project supported by the Major
Fundamental Research Program of the Natural Science Foundation
of Jiangsu Higher Education Institutions (08KJA430004) and the
Innovative Research Team of Advanced Chemical and Biological
Materials, Suzhou University.
References
[1] Y. Hayashi, J.M. Harris, A.S. Hoffman, React. Funct. Polym. 67 (2007) 1330.
[2] B. Mu, P. Liu, Q. Pu, React. Funct. Polym. 70 (2010) 578.
[3] A. Schallon, V. Jérôme, A. Walther, C.V. Synatschke, A.H.E. Müller, R. Freitag,
React. Funct. Polym. 70 (2010) 1.
[4] S. Çakmak, M. Gümüßsdereliog˘lu, A. Denizli, React. Funct. Polym. 69 (2009) 586.
[5] M. Oishi, Y. Nagasaki, React. Funct. Polym. 67 (2007) 1311.
[6] V. Šubr, K. Ulbrich, React. Funct. Polym. 66 (2006) 1525.
[7] Y. Matsumura, H. Maeda, Cancer Res. 46 (1986) 6387.
[8] H. Maeda, Adv. Enzyme. Regul. 41 (2001) 189.
[9] K. Park, G.Y. Lee, Y.S. Kim, M. Yu, R.W. Park, I.S. Kim, S.Y. Kim, Y. Byun, J.
Control. Release 114 (2006) 300.
[10] M.K. Yu, D.Y. Lee, Y.S. Kim, K. Park, S.A. Park, D.H. Son, G.Y. Lee, J.H. Nam, S.Y.
Kim, I.S. Kim, R.W. Park, Y. Byun, Pharm. Res. 24 (2007) 705.
[11] E.I. Altinog˘lu, T.J. Russin, J.M. Kaiser, B.M. Barth, P.C. Eklund, M. Kester, J.H.
Adair, ACS Nano 2 (2008) 2075.
Fig. 6. SPECT images of the HepA mouse model. The site of viscera tissues was
labeled A, while the site of tumor tissue was labeled B. IA and IB are the average
radioactive intensity in the areas marked A and B, respectively. The intensity ratio is
calculated by IA/IB.
[12] M.A. Yessine, Adv. Drug. Deliver. Rev. 56 (2004) 999.
[13] M.A. Yessine, M. Lafleur, C. Meier, H.U. Petereit, J.C. Leroux, BBA-
Biomembranes 1613 (2003) 28.
[14] M.A. Yessine, C. Meier, H.U. Petereit, J.C. Leroux, Eur. J. Pharm. Biopharm. 63
(2006) 1.
[15] S. Grube, U. Wolfrum, P. Langguth, Biomacromolecules 9 (2008) 1398.
[16] S. Flanary, A.S. Hoffman, P.S. Stayton, Bioconjugate Chem. 20 (2009) 241.
[17] A. San Juan, D. Letourneur, V.A. Izumrudov, Bioconjugate Chem. 18 (2007) 922.
[18] H.W. Duan, S.M. Nie, J. Am. Chem. Soc. 129 (2007) 3333.
[19] Y. Hu, T. Litwin, A.R. Nagaraja, B. Kwong, J. Katz, N. Watson, D.J. Irvine, Nano
Lett 7 (2007) 3056.
[20] A. Zintchenko, A. Philipp, A. Dehshahri, E. Wagner, Bioconjugate Chem. 19
(2008) 1448.
[21] M.L. Patil, M. Zhang, O. Taratula, O.B. Garbuzenko, H. He, T. Minko,
Biomacromolecules 10 (2009) 258.
[22] P. Dubruel, B. Christiaens, M. Rosseneu, J. Vandekerckhove, J. Grooten, V.
Goossens, E. Schacht, Biomacromolecules 5 (2004) 379.
[23] A.M. Funhoff, C.F. van Nostrum, G.A. Koning, N.M.E. Schuurmans-
Nieuwenbroek, D.J.A. Crommelin, W.E. Hennink, Biomacromolecules 5 (2004)
32.
segments were introduced for labeling radioactive halogens, such
as 125I, and the availability of PRTHs used in vivo was also exam-
ined. Fig. 6 indicates the tumor-targeting properties of PRTH-2
in vivo by SPECT. PRTH-2 was labeled with 125I and was then in-
jected through the tail vein of one HepA mouse model. The inten-
sity of the radioactive signal reveals the accumulation degree of
PRTH-2. The 125I signal is generally enhanced in the tumor tissue
marked B, while the signal decreases in the visceral tissues. The
single intensity ratio of IA/IB clearly reveals this trend. The radioac-
tive signal in the tumor tissue was found to be the strongest in the
body (IA/IB < 1). It indicates that PRTH-2 can effectively target HepA
tumor tissue. This is considered to be a result from the leaky tumor
vasculature and the EPR effect of PRTH.
[24] S. Dufort, L. Sancey, C. Wenk, V. Josserand, J.L. Coll, BBA-Biomembranes 1798
(2010) 2266.
[25] H. Zaidi, H. Vees, M. Wissmeyer, Acad. Radiol. 16 (2009) 1108.
[26] M. Zuhayra, A. Alfteimi, C.V. Forstner, U. Lützen, B. Meller, E. Henze, Bioorgan.
Med. Chem. 17 (2009) 7441.
[27] N. Shikano, Y. Kanai, K. Kawai, N. Ishikawa, H. Endou, Nucl. Med. Biol. 30
(2003) 31.
[28] N. Shikano, M. Ogura, H. Okudaira, S. Nakajima, T. Kotani, M. Kobayashi, S.
Nakazawa, T. Baba, N. Yamaguchi, N. Kubota, Y. Iwamura, K. Kawai, Nucl. Med.
Biol. 37 (2010) 197.
[29] O. Prante, J.T. Deichen, C. Hocke, T. Kuwert, Nucl. Med. Biol. 31 (2004) 365.
[30] B. Kühnast, F. Dollé, S. Terrazzino, B. Rousseau, C. Loc’h, F. Vaufrey, F. Hinnen, I.
Doignon, F. Pillon, C. David, C. Crouzel, B. Tavitian, Bioconjugate Chem. 11
(2000) 627.
[31] B. Xu, J. Yuan, T. Ding, Q. Gao, Polym. Bull. (Electronic) (2009) 1436.
[32] H. Tian, Y. He, C. Chang, J. Mater. Chem. 10 (2000) 2049.
[33] N.W.S. Kam, Z. Liu, H.J. Dai, Angew. Chem. (2006) 591.
4. Conclusion
In summary, we have developed a novel cancer-targetable PRTH
copolymer containing rhodamine and tyrosine segments. The rho-
damine segments enable PRTH to be traced by fluorescent signals.
However, many obstacles limit the application of the methods
based on the detection of fluorescent signals. Tyrosine segments
were introduced to label radioactive halogens, such as 125I, for iso-
tope detection. The BEL-7402 cancer cell targeting degree of PRTH
is related to the size of the micelle-like aggregates formed in aque-
ous solution. The in vivo studies prove the ability of PRTH to target
some tumor tissues and also reveal the availability of 125I-labeled
PRTH in SPECT. Therefore, PRTH can be detected by both fluores-
cent signals and radioactive signals, and it is a potential candidate
in the field of in vitro and in vivo cancer diagnosis and therapy.
ˇ
[34] J. Callahan, J. Kopecek, Biomacromolecules 7 (2006) 2347.
[35] F. Hudecz, J. Reményi, R. Szabó, G. Kóczán, G. Mez, P. Kovács, D. Gaál, J. Mol.
Recognit. 16 (2003) 288.