Paper
Photochemical & Photobiological Sciences
national research grant REEQ/1106/EQU/2005 is acknowl- 13 J. Burns, T. Yokota, H. Ashihara, M. E. J. Lean and
edged. R.R.N.M. and C.G.S. gratefully acknowledge FCT for
their PhD (SFRH/BD/65425/2009) and Post-Doctoral (SFRH/
A. Crozier, Plant foods and herbal sources of resveratrol,
J. Agric. Food Chem., 2002, 50, 3337–3340.
BPD/48777/2008) grants, respectively. J.M. gratefully acknowl- 14 N. Ratola, J. L. Faria and A. Alves, Analysis and quantifi-
edges the BII (2009) grant by FCT. C.M. and M.C.L. acknowl-
edge funding by the Ministerio de Ciencia e Innovación
(Spain) through project ACI2010-1093.
cation of trans-resveratrol in wines from Alentejo region
(Portugal), Food Technol. Biotechnol., 2004, 42, 125–130.
15 S. I. Imai, A possibility of nutriceuticals as an anti-aging
intervention: activation of sirtuins by promoting
mammalian NAD biosynthesis, Pharmacol. Res., 2010, 62,
42–47.
16 V. K. Kapoor, J. Dureja and R. Chadha, Synthetic drugs
with anti-ageing effects, Drug Discovery Today, 2009, 14,
899–904.
17 J. Lopez-Hernandez, P. Paseiro-Losada, A. T. Sanches-Silva
and M. A. Lage-Yusty, Study of the changes of trans-resvera-
trol caused by ultraviolet light and determination of trans-
and cis-resveratrol in Spanish white wines, Eur. Food Res.
Technol., 2007, 225, 789–796.
References
1 C. G. Daughton and T. A. Ternes, Pharmaceuticals and per-
sonal care products in the environment: agents of subtle
change?, Environ. Health Perspect., 1999, 107, 907–938.
2 S. A. Snyder, P. Westerhoff, Y. Yoon and D. L. Sedlak, Phar-
maceuticals, personal care products, and endocrine disrup-
tors in water: implications for the water industry, Environ.
Eng. Sci., 2003, 20, 449–469.
18 G. Montsko, M. S. P. Nikfardjam, Z. Szabo, K. Boddi,
T. Lorand, R. Ohmacht and L. Mark, Determination of pro-
ducts derived from trans-resveratrol UV photoisomerisation
by means of HPLC-APCI-MS, J. Photochem. Photobiol., A,
2008, 196, 44–50.
19 C. G. Silva and J. L. Faria, Anatase vs. rutile efficiency on
the photocatalytic degradation of clofibric acid under near
UV to visible irradiation, Photochem. Photobiol. Sci., 2009, 8,
705–711.
20 H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Chemical acti-
nometry, Pure Appl. Chem., 2004, 76, 2105–2146.
21 J.-M. Herrmann, Fundamentals and misconceptions in
photocatalysis, J. Photochem. Photobiol., A, 2010, 216,
85–93.
22 Z. B. Zhang, C. C. Wang, R. Zakaria and J. Y. Ying, Role of
particle size in nanocrystalline TiO2-based photocatalysts,
J. Phys. Chem. B, 1998, 102, 10871–10878.
23 C. C. Wang, Z. B. Zhang and J. Y. Ying, Photocatalytic
decomposition of halogenated organics over nanocrystal-
line titania, Nanostruct. Mater., 1997, 9, 583–586.
24 Y. F. Gao, Y. Masuda, W. S. Seo, H. Ohta and K. Koumoto,
TiO2 nanoparticles prepared using an aqueous peroxotita-
nate solutions, Ceram. Int., 2004, 30, 1365–1368.
25 J. R. S. Brownson, M. I. Tejedor-Tejedor and
M. A. Anderson, Photoreactive anatase consolidation
characterized by FTIR Spectroscopy, Chem. Mater., 2005,
17, 6304–6310.
3 D. Fatta-Kassinos, S. Meric and A. Nikolaou, Pharma-
ceutical residues in environmental waters and wastewater:
current state of knowledge and future research, Anal.
Bioanal. Chem., 2011, 399, 251–275.
4 A. Nikolaou, S. Meric and D. Fatta, Occurrence patterns of
pharmaceuticals in water and wastewater environments,
Anal. Bioanal. Chem., 2007, 387, 1225–1234.
5 G. Mascolo, L. Balest, D. Cassano, G. Laera, A. Lopez,
A. Pollice and C. Salerno, Biodegradability of pharma-
ceutical industrial wastewater and formation of recalcitrant
organic compounds during aerobic biological treatment,
Bioresour. Technol., 2010, 101, 2585–2591.
6 U. I. Gaya and A. H. Abdullah, Heterogeneous photocataly-
tic degradation of organic contaminants over titanium
dioxide: a review of fundamentals, progress and problems,
J. Photochem. Photobiol., C, 2008, 9, 1–12.
7 P. R. Gogate and A. B. Pandit, A review of imperative tech-
nologies for wastewater treatment I: oxidation technologies
at ambient conditions, Adv. Environ. Res., 2004, 8, 501–551.
8 O. Carp, C. L. Huisman and A. Reller, Photoinduced reac-
tivity of titanium dioxide, Prog. Solid State Chem., 2004, 32,
33–177.
9 A. Fujishima, T. N. Rao and D. A. Tryk, Titanium dioxide
photocatalysis, J. Photochem. Photobiol., C, 2000, 1, 1–21.
10 S. Bradamante, L. Barenghi and A. Villa, Cardiovascular
protective effects of resveratrol, Cardiovasc. Drug Rev., 2004,
22, 169–188.
26 M. Kosmulski, The significance of the difference in the
point of zero charge between rutile and anatase, Adv.
Colloid Interface Sci., 2002, 99, 255–264.
27 M. Deak and H. Falk, On the chemistry of the resveratrol
diastereomers, Monatsh. Chem., 2003, 134, 883–888.
28 Y. Bader, R. M. Quint and N. Getoff, Resveratrol products
resulting by free radical attack, Radiat. Phys. Chem., 2008,
77, 708–712.
11 M. S. Jang, E. N. Cai, G. O. Udeani, K. V. Slowing,
C. F. Thomas, C. W. W. Beecher, H. H. S. Fong,
N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon
and J. M. Pezzuto, Cancer chemopreventive activity of
resveratrol, a natural product derived from grapes, Science,
1997, 275, 218–220.
12 I. Tosun and A. N. Inkaya, Resveratrol as a health and
disease benefit agent, Food Rev. Int., 2010, 26, 85–101.
644 | Photochem. Photobiol. Sci., 2013, 12, 638–644
This journal is © The Royal Society of Chemistry and Owner Societies 2013