662 J ournal of Natural Products, 1997, Vol. 60, No. 7
Zacchino et al.
(s, C-4′), 135.79 (s, C-4), 136.22 (s, C-1′), 136.87 (d, C-8′),
137.34 (s, C-1), 152.47 (s, C-3′ and C-5′), 152.91 (s, C-3
and C-5); EIMS m/ z [M]+ (19), 225 (7), 224 (28), 221-
(6), 197 (5), 195 (46), 194 (100), 193 (43).
H-7′), 6.62 (2H, s, H-2 and H-6), 6.89 (3H, m, H-3′, H-5′,
and H-6′); 13C NMR (CDCl3) δ 13.3 (q, C-9), 16.3 (q, C-9′),
55.5 (q, C-3′, OMe), 55.9 (q, C-3 and C-5, OMe), 60.5 (q,
C-4, OMe), 73.3 (d, C-7), 82.4 (d, C-8), 104.2 (d, C-2 and
C-6), 109.1 (d, C-2′), 118.5 (d, C-5′), 118.7 (d, C-6′), 124.6
(d, C-8′), 130.2 (d, C-7′), 133.3 (s, C-1′), 135.5 (s, C-4),
146.4 (s, C-4′), 150.5 (s, C-3′), 152.9 (d, C-3 and C-5);
EIMS m/ z [M]+ (4.39), 225 (14.65), 224 (53.64), 197
(100), 164 (99), 135 (37).
th r eo-3,4-(Met h ylen ed ioxy)-7-h yd r oxy-1′-a llyl-
3′,5′-d im et h oxy-8.O.4′-n eolign a n (12). The same
procedure as described for alcohol 10 was followed
starting with ketone 3 (368 mg, 1 mmol), NaBH4 (114
mg, 3 mmol), and 15-crown-5 ether (0.69 mL, 3.6
mmol). A 8:2 mixture of crude threo-12 and erythro-11
was obtained. Preparative TLC on Si gel afforded pure
12 (187 mg, 73% yield), as a colorless oil; IR νmax (film)
3480, 2936, 1589, 1502, 1247, 1126, 1038 cm-1; 1H NMR
(CDCl3) δ 1.17 (3H, d, J ) 6.4 Hz, H-9), 3.35 (2H, br d,
J ) 6.8 Hz, H-8′), 3.87 (6H, s, 2 × OMe), 3.94 (1H, m,
H-8), 4.60 (1H, d, J ) 8.4 Hz, H-7), 4.99 (1H, m, H-9′),
5.15 (1H, m, H-9′), 5.91 (2H, s, OCH2O), 6.00 (1H, m,
H-8′), 6.44 (2H, s, H-2′ and H-6′), 6.73-6.87 (3H, m, H-2,
H-5, and H-6); 13C NMR (CDCl3) δ 13.30 (q, C-9), 40.34
(t, C-7′), 55.77 (q, C-3′ and C-5′, OMe), 78.77 (d, C-7),
86.21 (d, C-8), 100.34 (t, OCH2O) 105.26 (d, C-2′ and
C-6′), 107.37 (d, C-2), 107.79 (d, C-5), 115.98 (d, C-9′),
120.86 (d, C-6), 134,60 (s, C-4′), 134,90 (s, C-1), 135,74
(s, C-1′), 136.92 (d, C-8′), 146.94 (s, C-3), 147.42 (s, C-4),
152.50 (s, C-3′ and C-5′); EIMS m/ z [M]+ (11, 221 (9),
194 (100), 193 (36), 179 (9), 163 (9), 91 (13), 65 (12).
1-[3,4-(Met h ylen ed ioxy)p h en yl]-1-h yd r oxyp r o-
p a n e. The same procedure as for reduction of ketone
5 was used with 1-[3,4-(methylendioxy)phenyl]-1-oxo-
propane (103 mg, 0.58 mmol), synthesized through
Grignard reaction from piperonylnitrile (Aldrich Chemi-
cal Co.),23 LiAlH4 (228 mg, 6 mmol), and dry Et2O (10
mL). After purification through preparative TLC (hex-
ane-EtOAc 80:20), pure 19 (90 mg, 0.50 mmol) was
obtained as a colorless oil; IR νmax 3520, 2940, 1630,
1540, 1500, 1470, 1450, 1055, 950 cm-1 1H NMR
;
(CDCl3) δ 0.89 (3H, t, J ) 8.0 Hz, H-9), 1.77 (2 H, m,
H-8), 4.50 (1H, t, J ) 6.0 Hz, H-7), 5.95 (2H, O-CH2-O),
6.77-6.86 (2H, ArH); 13C NMR (CDCl3) δ 10.05 (q, C-9),
31.71 (t, C-8), 75.80 (d, C-7), 100.84 (t, O-CH2-O), 106.29
(d, C-2), 107.86 (d, C-5), 119.30 (d, C-6), 138.54 (s, C-1),
146.75 (s, C-3), 147.63 (s, C-4); EIMS m/ z [M]+ (51),
151 (100), 93 (95), 65 (83), 57 (14), 41(12).
er yth r o-3,4-Dim eth oxy-7-h ydr oxy-1′(E)-pr open yl-
3′-m eth oxy-8.O.4′-n eolign a n (15). An Et2O solution
of ketone 5 (428 mg, 1.2 mmol) was gradually added to
a stirred suspension of LiAlH4 (456 mg, 12 mmol) in
dry Et2O (36 mL). After addition was complete, the
mixture was refluxed for 24 h. Excess LiAlH4 was
carefully destroyed by addition of EtOAc-ice and was
finally diluted with H2O (60 mL), acidified, (10% HCl),
and extracted with Et2O (3 × 60 mL). The combined
Et2O extracts were washed with 1 N aqueous NaOH and
H2O, dried (Na2SO4), followed by concentration affording
a crude oil, which on purification by preparative TLC
(hexane-EtOAc 80:20), yielded pure 15 (385 mg, 1.08
mmol); IR νmax (film) 3500, 2970, 1610, 1525, 1390, 1270,
Ack n ow led gm en t. We thank UNR (Universidad
Nacional de Rosario) for financial support, Dr. Oreste
Mascaretti (IQUIOS-CONICET-UNR) for helpful com-
ments on the manuscript, and Drs. Clara Lo´pez and
Alfredo Borghi (CEREMIC, UNR) for providing cultures
of dermatophytes and for their valuable assistance in
the mycological work.
Refer en ces a n d Notes
(1) Schultes, E.; Holmstedt, B. Lloydia 1971, 34, 61-78.
(2) Gottlieb, O. J . Ethnopharmacol. 1979, 1, 309-323.
(3) Herrera Braga, A.; Zacchino, S.; Badano, H.; Gonza´lez Sierra,
M.; Ru´veda, E. Phytochemistry 1984, 23, 2025-2028.
(4) Forrest, J .; Heacock, R.; Forrest, T. J . Chem. Soc., Perkin Trans.
I 1974, 205-209.
(5) Hattori, M.; Hada, S.; Shu,Y.; Kakiuchi, N.; Namba, T. Chem.
Pharm. Bull. 1987, 35, 668-674.
1
1150, 1050 cm-1; H NMR (CDCl3) δ 1.17 (3H, d, J )
(6) Isogai, A.; Murakoshi, S.; Suzuki, A.; Tamura, S. Agric. Biol.
Chem. 1973, 37, 1479-1486.
6.0 Hz, H-9), 1.88 (3H, d, J ) 5.2 Hz, H-9′), 3.89, 3.91,
3.92 (9 H, s, 3 × OMe), 4.37 (1H, m, H-8), 4.86 (1H, d,
J ) 3.2 Hz, H-7), 5.70-6.23 (1H, m, H-8′), 6.39 (1H, d,
J ) 18.0 Hz, H-7′), 6.84-7.0 (6H, m, ArH); 13C NMR
(CDCl3) δ 13.29 (q, C-9), 16.29 (q, C-9′), 55.67, 55.74 (q,
C-3 and C-4, OMe), 73.31 (d, C-7), 82.40 (d, C-8), 109.10
(t, C-2′), 109.23 (t, C-5), 110.60 (t, C-2), 118.27 (t, C-5′),
118.86 (t, C-6′), 119.81 (t, C-6), 124.92 (d, C-8′), 130.30
(d, C-7′), 132.29 (s, C-1′), 133.58 (s, C-1), 145.44 (s, C-4),
147.99 (s, C-3), 148.87 (s, C-4′), 151.37 (s, C-3′); EIMS
m/ z [M]+ (2) 195 (10), 194 (15), 167 (78), 165 (73), 164
(100), 149 (10), 139 (40), 121 (28), 91 (19), 77 (30).
(7) Hada, S.; Hattori, M.; Tezuka, Y.; Kikiuchi, T.; Namba, T.
Phytochemistry 1988, 27, 563-568.
(8) Barata, L.; Baker, P.; Gottlieb, O.; Ru´veda, E. Phytochemistry
1978, 17, 783-786.
(9) Cavalcante, S.; Yoshida, M.; Gottlieb, O. Phytochemistry 1985,
24, 1051-1055.
(10) Ferri, P.; Barata, L. Phytochemistry 1992, 31, 1375-1377.
(11) Isogai, A.; Murakoshi, S.;. Suzuki, A.; Tamura, S. Agric. Biol.
Chem. 1973, 37, 889-895.
(12) De Oliveira, M.; Sampaio, R. Cienc. Cult. (Sao Paulo) 1980, 32,
104-108.
(13) For the assignment of relative configurations of alcohols, the
appreciable differences in 1H- and 13C-chemical shifts between
the erythro and threo forms was used. See refs 3-7, 9.
(14) Wallis, A. Aust. J . Chem. 1973, 26, 585-594.
(15) Sarkanem, K.; Wallis, A. J . Chem. Soc., Perkin Trans. 1 1973,
1869-1877.
er yth r o-3,4,5-Tr im et h oxy-7-h yd r oxy-1′(E)-p r op -
en yl-3′-m eth oxy-8.O.4′-n eolign a n (17). The same
procedure as for reduction of ketone 5 was used with
ketone 6 (106 mg, 0.3 mmol), LiAlH4 (114 mg, 3 mmol),
and dry Et2O (10 mL). After purification through
preparative TLC (hexane-EtOAc 80:20), pure 17 (101
mg, 0.26 mmol) was obtained as a colorless oil; IR νmax
(film) 3500, 2920, 1601, 1470, 1420, 1330, 1265, 1140,
1040 cm-1; 1H NMR (CDCl3) δ 1.17 (3H, d, J ) 6.0 Hz,
H-9), 1.88 (3H, d, J ) 5.5 Hz, H-9′), 3.82, 3.85, 3.90 (12H,
4 × OMe), 4.35 (1H, m, H-8), 4.85 (1H, d, J ) 3.0 Hz,
H-7), 6.12-6.25 (1H, m, H-8′), 6.39 (1H, d, J ) 16.0 Hz,
(16) Fonseca, S.; Nielsen, L.; Ru´veda, E. Phytochemistry 1979, 18,
1703-1706.
(17) Zacchino, S.; Badano, H. J . Nat. Prod., 1985, 48, 830-832.
(18) Rahalison, L.; Hamburger, M.; Monod, M.; Fenk, E.; Hostett-
mann, K. Planta Med. 1994, 60, 41-44.
(19) Ca´ceres, A.; Lo´pez, B.; Giron, M.; Logeman H. J . Ethnophar-
macol. 1991, 31, 263-276.
(20) Wright, L.; Scott, E.; Gorman, S. J . Antimicrob. Chemother. 1983,
12, 317-327.
(21) Zacchino, S.; Badano, H. J . Nat. Prod. 1988, 51, 1261-1265.
(22) Zacchino, S.; Badano, H. J . Nat. Prod. 1991, 54, 155-160.
(23) Cannone, P.; Foscolos, G.; Limay, G. Tetrahedron Lett. 1980, 21,
155-158.
NP9605504