S. M. Rele et al. / Tetrahedron Letters 44 (2003) 89–91
91
Acknowledgements
6. (a) Gan, Z.; Roy, R. Tetrahedron 2000, 56, 1423–1428;
(b) Roy, R.; Das, S. K.; Dominique, R.; Trono, C. M.;
Hernandez-M, F.; Santoyo-G, F. Pure Appl. Chem. 1999,
71, 565–571; (c) Furstner, A. Angew. Chem., Int. Ed.
Engl. 2000, 39, 3012–3043; (d) Brummer, O.; Ruckert, A.;
Blechert, S. Chem. Eur. J. 1997, 3, 441–446.
This work was funded by grants from the NIH. The
authors wish to thank Dr. Shaoxiong Wu of the Emory
NMR center for help with the HMQC experiments.
7. (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001,
34, 18–29; (b) Chatterjee, A. K.; Morgan, J. P.; Scholl,
M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783–
3784; (c) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54,
4413–4450; (d) Nguyen, S. T.; Grubbs, R. H. J. Am.
Chem. Soc. 1993, 115, 9858–9859.
References
1. (a) Conrad, H. E. Heparin Binding Proteins; Academic
Press: New York, 1998; (b) Capila, I.; Linhardt, R. J.
Angew Chem., Int. Ed. 2002, 41, 390–412.
2. (a) The Chemistry, Biology and Medical Applications of
Hyaluronan and its Derivatives; Laurent, T. C., Ed.;
Wenner-Gren International Series No. 72, Portland Press:
London, 1998; (b) Lapcik, L., Jr.; Lapcik, L.; Smedt, S.;
Demeester, J.; Chabrecek, P. Chem Rev. 1998, 98, 2663–
2684.
8. The acceptor 1 was synthesized from
D-glucosamine
hydrochloride over eight steps: 1H NMR (400 MHz,
CDCl3) l 1H NMR (CDCl3) l 7.48–7.45 (m, 2H, Ph),
7.38–7.26 (m, 3H, Ph), 5.83–5.79 (m, 1H, CHꢀCH2), 5.56
(s, 1H, CHPh), 5.06–4.97 (m, 2H, CHꢀCH2), 4.33 (d, 1H,
H-1b, J=7.8 Hz), 4.29 (m, 1H), 3.89 (m, 1H), 3.73 (t, 1H,
J=10.0 Hz), 3.56–3.48 (m, 3H), 3.45–3.38 (m, 2H), 2.65
(br s, 1H, -OH) 2.17–2.15 (m, 2H), 1.76–1.73 (m, 2H).
9. All compounds gave satisfactory NMR and mass spectral
data. Selected spectral data for some of the compounds is
reported below. For 4: 1H NMR (400 MHz, CDCl3) l
7.45–7.30 (m, 5H, C6H5), 6.20 (d, 1H, J=9.0 Hz,
NHAc), 5.70 (m, 1H, CHꢀCH2), 5.51 (1H, s, CHPh),
5.17 (m, 2H, CHꢀCH2), 5.01–4.92 (m, 3H), 4.88 (d, 1H,
H-1%, J=7.8 Hz), 4.78 (d, 1H, H-1, J=3.6 Hz), 4.32–4.19
(m, 2H), 4.02–3.96 (m, 1H), 3.79–3.60 (m, 6H), 3.55 (s,
3H, CO2CH3), 3.45–3.34 (m, 1H), 2.18–2.10 (m, 2H,
CH2CH2CHꢀCH2), 2.01 (s, 3H, COCH3), 1.99 (s, 3H,
COCH3), 1.96 (s, 3H, COCH3), 1.94 (s, 3H, NH-
COCH3), 1.84–1.78 (m, 2H, CH2CH2CHꢀCH2); HRMS
(FAB) calcd for C33H43O15N (M++Li) 700.2793, found
700.2795. For 8: 1H NMR (400 MHz, CDCl3) l 7.50–
7.25 (10H, m, C6H5), 7.09 (2H, d, J=8.4 Hz,
C6H4OCH3), 6.8 (2H, d, J=8.4 Hz, C6H4OCH3), 5.85
(1H, d, J=8.4 Hz, NH) 5.81 (1H, m, CHꢀCH2), 5.23
(1H, d, J=4.8 Hz, H-1%), 5.05–4.95 (2H, m, CHꢀCH2),
4.84 (m, 1H), 4.71–4.64 (m, 4H), 4.42–4.38 (3H, m), 4.26
(1H, d, H-1, J=7.5 Hz), 4.19 (2H, m), 3.93–3.81 (3H, m),
3.79 (3H, s, C6H4OCH3), 3.73 (1H, m), 3.53 (3H, s,
CO2CH3), 3.47–3.36 (3H, m), 2.15 (m, 2H,
CH2CH2CHꢀCH2), 2.05 (3H, s, CO2CH3), 2.01 (3H, s,
CO2CH3), 1.73 (m, 2H, CH2CH2CHꢀCH2); HRMS
(FAB) calcd for C46H57O15N (M++H) 864.00, found
864.5179. For 9: 1H NMR (600 MHz, CDCl3) l 7.39–
7.30 (m, 10H), 6.11(d, 2H, J=7.2 Hz), 5.40–5.36 (m, 4H),
5.19–5.06 (m, 4H), 4.97–4.91 (vt, 2H, J=8.1 Hz), 4.80 (d,
2H, J=7.8 Hz), 4.66 (vt, 2H, J=9.3 Hz), 4.30 (dd, 2H,
J=10.3 Hz, J=4.5 Hz), 3.85–3.63 (m, 10H), 3.58 (s, 6H),
3.56–3.47(m, 4H), 3.07 (q, 2H, J=8.7 Hz), 2.04 (m, 2H),
1.98 (s, 18 H), 1.95–19.3 (s, br, 6H), 1.80 (m, 2H) 1.75 (m,
2H), 1.60 (m, 2H), 1.23 (m, 2H); HRMS (FAB) calcd for
C64H82O30N2 (M++Na) 1381.00, found 1381.50.
3. (a) Tromp, C. M.; Basten, J. E. M.; Broekhoven, M. A.;
van Dinther, T. G.; Petitou, M.; van Boeckel, C. A. A.
Bioorg. Med. Chem. Lett. 1998, 8, 2081–2086; (b) van
Boeckel, C. A. A.; Beetz, T.; Vos, J. N.; de Jong, A. J.
M.; van Aelst, S. F.; van den Bosch, R. H.; Mertens, J.
M. R.; van der Vlugt, F. A. J. Carbohydr. Chem. 1985, 4,
293–321; (c) Tabeur, C.; Mallet, J.-M.; Bono, F.; Her-
bert, J.-M.; Petitou, M.; Sinay¨, P. Bioorg. Med. Chem.
Lett. 1999, 8, 2003–2012; (d) Koshida, S.; Suda, Y.;
Fukui, Y.; Ormsby, J.; Sobel, M.; Kusumoto, S. Tetra-
hedron Lett. 1999, 40, 5725–5728; (e) Suda, Y.; Koshida,
S.; Arano, A.; Morichika, T.; Fukui, Y.; Kusumoto, S.;
Sobel, M. Polymer Preprints 2000, 41, 1624–1625; (f)
Petitou, M.; Duchaussoy, P.; Driguez, P.-A.; Herault,
J.-P.; Lormeau, J.-C.; Herbert, J.-M. Bioorg. Med. Chem.
Lett. 1999, 9, 1155–1160.
4. (a) de Paz, J.-L.; Angulo, J.; Lassaletta, J.-M.; Nieto, P.
M.; Redondo-Horcajo, M.; Lozano, R. M.; Gimenez-
Gallego, G.; Matin-Lomas, M. ChemBioChem 2001, 2,
673–685; (b) Petitou, M.; Imberty, A.; Duchaussoy, P.;
Driguez, P.-A.; Ceccato, M.-L.; Gourvenec, F.; Sizun, P.;
Herault, J.-P.; Perez, S.; Herbert, J.-M. Chem. Eur. J.
2001, 7, 858–873; (c) Westerduin, P.; van Boeckel, C. A.
A.; Basten, J. E. M.; Broekhoven, M. A.; Lucas, H.;
Rood, A.; van der Heijden, H.; van Amsterdam, R. G.
M.; van Dinther, T. G.; Mueleman, D. G.; Visser, A.;
Vogel, G. M.; Damm, J. B.; Overklift, G. T. Bioorg. Med.
Chem. Lett. 1994, 2, 1267–1280; (d) Ornitz, D. M.; Herr,
B. A.; Nilsson, M.; Westman, J.; Svahn, C. M.; Waks-
man, G. Science 1995, 268, 432–436; (e) Waksman, G.;
Herr, A. B. Nat. Struct. Biol. 1998, 5, 527–530; (f)
Venkataraman, G.; Sasisekharan, V.; Herr, A. B.; Ornitz,
D. M.; Waksman, G.; Cooney, C. L.; Langer, R.;
Sasisekharan, R. Proc. Natl. Acad. Sci. USA 1996, 93,
845–850.
5. (a) Herbert, J.-M.; Petitou, M.; Lormeau, J.-C.; Cariou,
R.; Necciari, J.; Magnani, H. N.; Zandberg, P.; Van
Amsterdam, R. G. M.; Van Boeckel, C. A. A.; Meule-
man, D. G. Cardiovasc. Drug Rev. 1996, 76, 590–600; (b)
Petitou, M.; He´rault, J.-P.; Bernat, A.; Driguez, P.-A.;
Duchaussoy, P.; Lormeau, J.-C.; Herbert, J.-M. Nature
1999, 398, 417–422.
10. Tabeur, C.; Machetto, F.; Mallet, J.-M.; Duchaussoy, P.;
Petitou, M.; Sinay¨, P. Carbohydr. Res. 1996, 281, 253–
276.
11. The peaks for the E-isomer are generally accepted to
resonate downfield to that of the Z-isomer. See Ref. 6a.