C–F Bond Activation
FULL PAPER
(with one monoatomic ligand site having 50% occupancy of
fluorine). The data reported for 3 was isolated from a separate
crystallization attempt.
A. Herzog, F. Liu, H. W. Roesky, A. Demsar, K. Keller, M.
Noltemeyer, F. Pauer, Organometallics 1994, 13, 1251–1256.
Unsuccessful attempts to completely eliminate air and water in
an attempt to crystallize 1 led to the formation of 4 in at least
one instance. The undesired compound was characterized by
X-ray crystallography (Figure 1) and 1H NMR (C6D6) data,
which closely matched literature values from ref. 23.
P. J. Chirik, M. W. Day, J. E. Bercaw, Organometallics 1999, 18,
1873–1881.
Beckhaus, D. Haase, W. Saak, Eur. J. Inorg. Chem. 2005, 938–
945.
[39] U. Jäger-Fiedler, P. Arndt, W. Baumann, A. Spannenberg, V. V.
Burlakov, U. Rosenthal, Eur. J. Inorg. Chem. 2005, 2842–2849.
[40] 19F NMR spectroscopic data for 2- and 3-fluoropyridine: C. S.
Giam, J. L. Lyle, J. Am. Chem. Soc. 1973, 95, 3235–3239.
[41] 1H NMR spectroscopic data for pyridine: A. Tamaoki, K. Tak-
ahashi, Bull. Chem. Soc. Jpn. 1986, 59, 1650–1652.
[42] 1H NMR spectroscopic data for 2- and 4-fluorobiphenyl: a) W.
Guo, T. C. Wong, Magn. Reson. Chem. 1986, 24, 75–79. 19F
NMR spectroscopic data for 2- and 4-fluorobiphenyl: b) J.
Zhang, D. D. DesMarteau, J. Fluorine Chem. 2001, 111, 253–
257.
[26]
[27]
[28]
[29]
NMR spectroscopic data for several possible organic products
were consulted. 19F NMR spectroscopic data for 1,2,4-trifluo-
robenzene, see: a) A. M. Stuart, P. L. Coe, D. J. Moody, J. Flu-
orine Chem. 1998, 88, 179–184. 19F NMR spectroscopic data
for 1,2,3-trifluorobenzene, see: b) G. A. Selivanova, V. F. Star-
ichenko, V. D. Shteingarts, Zh. Org. Khim. 1995, 31, 226–232.
1H and 19F NMR spectroscopic data for n-propylpentafluoro-
benzene, see: c) I. Ojima, K. Kato, M. Okabe, T. Fuchikami,
J. Am. Chem. Soc. 1987, 109, 7714–7720. 1H NMR spectro-
scopic data for 1-(pentafluorophenyl)-2-propanol and 1,2-ep-
oxy-3-pentafluorophenylpropane, see: d) R. Filler, W. L. White,
J. Chem. Soc. C 1971, 2062–2068. 2,3,4,5- and 2,3,4,6-tetra-
fluoro(allylbenzene)have not been previously reported in the
literature, nor have 2,3,4-, 2,3,6-, and 2,4,6-trifluoro(allylben-
zene). NMR spectroscopic data for 2,3,5,6-tetrafluoro(allyl-
benzene)and 2,4,5-trifluoro(allylbenzene)were not available.
NMR spectroscopic data for 3-pentafluorophenylpropan-1-ol
has not been reported.
[43] 19F NMR spectroscopic data for 2,2Ј,3,3Ј,5,5Ј,6,6Ј-octafluoro-
biphenyl: R. A. Contigiani, H. E. Bertorello, M. Marti-
nez de Bertorello, J. Organomet. Chem. 1971, 32, 7–15.
[44] 1H and 19F NMR spectroscopic data for 2,3,4,5,6-pentafluo-
ro(allylbenzene): A. Haas, J. Koehler, J. Fluorine Chem. 1981,
17, 531–537.
[45] 19F NMR spectroscopic data for hexafluorobenzene: S. Ando,
T. Matsuura, Magn. Reson. Chem. 1995, 33, 639–645.
[46] 19F NMR spectroscopic data for octafluoronaphthalene: C. M.
Hu, F. Long, Z. Q. Xu, J. Fluorine Chem. 1990, 48, 29–35.
[47] 19
F NMR spectroscopic data for decafluorobiphenyl: G.
von Fircks, H. Hausmann, V. Francke, H. Günther, J. Org.
Chem. 1997, 62, 5074–5079.
[48] 1H NMR spectroscopic data for 1-fluorohexane: a) D. A.
Flosser, R. A. Olofson, Tetrahedron Lett. 2002, 43, 4275–4279.
19F NMR spectroscopic data for 1-fluorohexane: b) G. Filipov-
ich, G. V. D. Tiers, J. Phys. Chem. 1959, 63, 761–763.
[49] 1H and 19F NMR spectroscopic data for 3,3,3-trifluoroprop-
ene: M. Hanack, J. Ullmann, J. Org. Chem. 1989, 54, 1432–
1435.
19F NMR spectroscopic data for 2H-nonafluorobiphenyl:
D. E. Fenton, A. G. Massey, Tetrahedron 1965, 21, 3009–3018.
1H NMR spectroscopic data for 1-fluoroethylene: C. N.
[30]
[31]
[50] 19F NMR spectroscopic data for 1,1-difluoroethylene: F. J.
Weigert, J. Fluorine Chem. 1990, 46, 375–384.
Banwell, N. Sheppard, Mol. Phys. 1960, 3, 351–369.
[32] 1H NMR spectroscopic data for ethylene: R. J. Abraham, M.
Canton, L. Griffiths, Magn. Reson. Chem. 2001, 39, 421–431.
[33] 19F NMR spectroscopic data for β,β-difluoro-α-methylstyrene:
F. J. Weigert, J. Fluorine Chem. 1993, 63, 53–58.
[51] 1H and 19F NMR spectroscopic data for hexafluoroisobutene:
S. Misaki, S. Takamatsu, J. Fluorine Chem. 1984, 24, 531–533.
[52] 1H and 19F NMR spectroscopic data for α-(trifluoromethyl)
styrene: R. Q. Pan, X. X. Liu, M. Z. Deng, J. Fluorine Chem.
1999, 95, 167–170.
[34] 1H and 19F NMR spectroscopic data for (Z)-1,2,3,3,3-penta-
fluoropropene and X-ray structure of Cp*2ZrCl(c-C5F5H2) (Zr
analog of 6): B. M. Kraft, Ph. D. Thesis, University of Roches-
ter, 2002.
[53] 1H and 19F NMR spectroscopic data for difluoromethylenecy-
clohexane: C. M. Hu, F. L. Qing, C. X. Shen, J. Chem. Soc.,
Perkin Trans. 1 1993, 335–338.
[35] NMR spectroscopic data for several fluorinated cyclopentene
derivatives are available. 19F NMR spectroscopic data for
1H,4H-, 3H,4H-, and 3H,5H-hexafluorocyclopentene, see: a)
R. Fields, M. Green, M. T. Harrison, R. N. Haszeldine, A.
Jones, A. B. P. Lever, J. Chem. Soc. A 1970, 49–58. 19F NMR
spectroscopic data for 1H,2H,3H-pentafluorocyclopentene,
see: b) W. J. Feast, D. R. A. Perry, R. Stephens, Tetrahedron
1966, 22, 433–439. 1H and 19F NMR spectroscopic data for
1H,2H,3H,3H-tetrafluorocyclopentene, see: c) W. R. Dolbier,
D. M. Al-Fekri, Tetrahedron 1987, 43, 39–44. 1H and 19F NMR
spectroscopic data for 3,4- and 3,5-difluorocyclopentene, see:
d) D. F. Shellhamer, M. C. Chiaco, K. M. Gallego, W. S. C.
Low, B. Carter, V. L. Heasley, R. D. Chapman, J. Fluorine
Chem. 1995, 72, 83–87. 19F NMR spectroscopic data for 1-
fluorocyclopentene, see: e) C. J. LaFrancois, P. B. Shevlin, Tet-
rahedron 1997, 53, 10071–10082.
[54] 19F NMR spectroscopic data for perfluoropropene: M. V. Ga-
lakhov, V. A. Petrov, V. I. Bakhmutov, G. G. Belen'kii,
B. A. Kvasov, L. S. German, E. I. Fedin, Izv. Akad. SSSR, Ser.
Khim. 1985, 306–312.
[55] 19F NMR spectroscopic data for octafluorocyclopentene: R. D.
Chambers, A. R. Edwards, J. Chem. Soc., Perkin Trans. 1 1997,
24, 3623–3628.
[56] It has been noted that the integration program SAINT pro-
duces cell constant errors that are unreasonably small, because
systematic error is not included. More reasonable errors might
be estimated at 10ϫthe listed value.
[57] The SADABS program is based on the method of Blessing:
R. H. Blessing, Acta Crystallogr., Sect. A 1995, 51, 33–38.
[58] Using the SHELX95 package, R1 = (Σ||Fo| – |Fc||)/Σ|Fo|, wR2 =
2
2 2
{Σ[w(Fo – Fc ) ]/Σ[w(Fo2)2] }1/2, where w = 1/[σ2(Fo2)+
(a·P)2 +b·P] and P = [f·(maximum of 0 or Fo2)+(1 – f)·Fc ].
2
[36] B. M. Kraft, R. J. Lachicotte, W. D. Jones, J. Am. Chem. Soc.
2000, 122, 8559–8560.
[37] B. M. Kraft, R. J. Lachicotte, W. D. Jones, Organometallics
2002, 21, 727–731.
[38] a) H. M. Hoyt, F. E. Michael, R. G. Bergman, J. Am. Chem.
Soc. 2004, 126, 1018–1019; b) I. M. Piglosiewicz, S. Kraft, R.
[59] CCDC-618856 to -618858 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
Received: August 30, 2006
Published Online: January 4, 2007
Eur. J. Inorg. Chem. 2007, 2839–2847
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
2847