Notes and references
1
† Physical data: Z-2: Colourless crystals, mp 111–112 °C, H NMR (400
MHz, CDCl3) d = 7.93 (4H, m, arom), 7.50 (2H, m, arom), 7.46 (4H, m,
arom), 7.42 (2H, m, arom), 1.45 (18H, s, o-t-Bu), 1.34 (9H, s, p-t-Bu);
13C{1H} NMR (100 MHz, CDCl3) d = 159.4 (dd, 1JPC 84 Hz, 1JPC 62 Hz,
PNC), 154.0 (d, 2JPC 2 Hz, o-Mes*), 151.7 (s, p-Mes*), 134.7 (dd, 1JPC 62
Hz, 3JPC 13 Hz, ipso-Mes*), 132.9 (d, 2JPC 11 Hz, m-Ph), 132.4 (d, 4JPC
3
Hz, p-Ph), 132.0 (dd, 1JPC 88 Hz, 3JPC 3 Hz, ipso-Ph), 128.8 (d, 3JPC 13 Hz,
o-Ph), 123.0 (brs, m-Mes*), 38.3 (brs, o-CMe3), 35.5 (s, p-CMe3), 33.5 (d,
4JPC 7 Hz, o-CMe3), 31.8 (s, p-CMe3). E-2: 1H NMR (400 MHz, CDCl3) d
= 7.75 (4H, m, arom), 7.38 (8H, m, arom), 1.51 (18H, s, o-t-Bu), 1.39 (9H,
s, p-t-Bu). 4: Deep red prisms (hexane), mp 173 °C (decomp); 1H NMR (400
MHz, CDCl3) d = 7.74 (4H, m, arom), 7.62 (2H, m, arom), 7.53 (6H, m,
arom), 1.63 (18H, s, o-t-Bu), 1.35 (9H, s, p-t-Bu); 13C{1H} NMR (100
MHz, CDCl3) d = 209.4 (dd, 2JPC 46 Hz, 3JPC 6 Hz, COeq), 204.8 (d, 3JPC
2
4 Hz, COeq), 202.4 (d, JPC 10 Hz, COax), 155.5 (s, o-Mes*), 153.5 (s, p-
Mes*), 142.6 (dd, 1JPC 89 Hz, 1JPC 16 Hz, PNC), 133.5 (d, 4JPC 3 Hz, p-Ph),
133.0 (d, 2JPC 11 Hz, m-Ph), 130.1 (m, ipso-Ph), 129.3 (d, 3JPC 13 Hz, o-Ph),
128.3 (dd, 1JPC 87 Hz, 3JPC 5 Hz, ipso-Mes*), 123.5 (d, 3JPC 7 Hz, m-Mes*),
39.1 (brs, o-CMe3), 35.7 (s, p-CMe3), 33.8 (brs, o-CMe3), 31.5 (s, p-CMe3).
Anal. Calc. for C35H39ClO4P2SW: C, 50.23; H, 4.70. Found: C, 50.24, H,
4.66%. 5: Red plates (ether-hexane), mp 102 °C (decomp). Anal. Calc. for
C31H39ClI2P2S: C, 46.83; H, 4.91. Found: C, 46.79; H, 4.84%.
Fig. 2 An ORTEP drawing of 4 with 30% probability ellipsoids. Hydrogen
atoms are omitted for clarity. The p-t-butyl group is disordered and the
atoms with a predominant occupancy factors (0.55), which are refined
isotropically, are shown. Selected bond lengths (Å) and angles (°): W–P1
2.442(2), W–S1 2.566(3), Cl–C1 1.746(9), S–P2 1.990(4), P1–C1 1.65(1),
P1–CMes* 1.82(1), C1–P2 1.81(1), S–W–P1 82.80(9), W–S–P2 102.9(2),
W–P1–C1 115.3(3), W–P–CMes* 143.3(3), C1–P1–CMes* 101.3(4), P1–C1–
P2 117.5(5), P1–C1–Cl 127.4(6), P2–C1–Cl 114.9(6), S–P2–C1 108.2(3).
‡ Crystal data: Z-2: C31H39ClP2S, M = 541.11, colourless prism, 0.50 3
0.50 3 0.20 mm, monoclinic, P21/n (no. 14), a = 16.294(2), b = 11.480(4),
c = 17.142(3) Å, b = 105.38(1)°, V = 3091(4) Å3, Z = 4, T = 288 K,
2qmax = 50.0°, r = 1.163 g cm23, m(Mo-Ka) = 0.312 mm21, 4565
measured reflections, 4520 unique reflections (Rint = 0.052), R1 = 0.062 [I
> 2s(I)], Rw = 0.087 (all data), S = 1.29 for 316 parameters (CCDC-
196480). 4: C35H39ClO4P2SW, M = 837.00, deep red prism, 0.30 3 0.30
they have displayed various intriguing molecular assemblies
which are dependent on the reaction conditions.11 For example,
triphenylphosphine sulfide has been reported to react with
iodine to form charge-transfer complexes11,12 and it prompted
us to investigate the reaction of Z-2 with iodine. Compound Z-2
was mixed with an equivalent amount of iodine in ether at 20 °C
and a deep red solution was obtained after 3 h. This solution was
diluted with hexane and cooled to 0 °C to obtain compound 5 as
red-brown plates. The elemental analysis revealed that 5 is a 1+1
charge-transfer complex of Z-2 and iodine. In the IR spectrum
(KBr), 5 displayed a peak at n(PNS) 611 cm21, which is lower
than that of Z-2. On the other hand, the 31P NMR spectrum in
chloroform-d indicated the value of dP 325.8, 48.4; 2JPP = 106
Hz, which is similar to the corresponding data of Z-2. The
structure of 5 was finally established by the X-ray crystallog-
raphy and the structure is shown in Fig. 3.‡ The I2–I1–S
skeleton is almost straight in shape.12 The S–I1 distance is
longer than that of Ph3PS·I2 [2.753(2) Å], whereas the I1–I2 and
P1–S distances are close to those of Ph3PS·I2.12 The PNC
distance is almost identical with that for Z-2. The molecule
displays a weak intermolecular interaction to form a dimer and
the intermolecular S…S and S…I1 distances, 3.320(4) and
3.838(2) Å respectively, are shorter than the corresponding
sums of the van der Waals radii [S, 1.85 Å; I, 2.15 Å].13
This work was supported in part by Grants-in-Aid for
Scientific Research (No.13303039 and 14044012) from the
Ministry of Education, Culture, Sports, Science and Technol-
ogy, Japan. H. L. is grateful to the Japan Society for the
Promotion of Science for Postdoctoral Fellowships for Foreign
Researchers. We thank Dr Chizuko Kabuto, Tohoku University,
for obtaining the X-ray data of compound 5.
¯
3 0.20 mm, triclinic, P1 (no. 2), a = 17.180(2), b = 20.019(1), c =
10.807(1) Å, a
= 90.023(6), b = 91.993(2), g = 89.968(6)°, V =
3714.6(6) Å3, Z = 4, T = 296 K, 2qmax = 55.0° r = 1.497 g cm23, m(Mo-
Ka) = 3.362 mm21, 28035 measured reflections, 14887 unique reflections
(Rint = 0.119), R1 = 0.064 [I > 2s(I)], Rw = 0.148 (all data), S = 1.28 for
789 parameters (CCDC-196481). 5: C31H39ClI2P2S, M = 794.92, red plate,
0.40 3 0.50 3 0.08 mm, orthorhombic, Pbca (no. 61), a = 11.751(1), b =
38.246(3), c = 15.542(1) Å, V = 6985(1) Å3, Z = 8, T = 243 K, 2qmax
=
55.0°, r = 1.512 g cm23, m(Mo-Ka) = 2.047 mm21, 59303 measured
reflections, 8504 unique reflections (Rint = 0.043), R1 = 0.045 [I > 3s(I)],
Rw = 0.053 (all data), S = 1.19 for 334 parameters (CCDC-196482). See
CIF or other electronic format.
1 S. Ito and M. Yoshifuji, Chem. Commun., 2001, 1208.
2 M. Regitz and O. J. Scherer, Multiple Bonds and Low Coordination in
Phosphorus Chemistry, Georg Thieme Verlag, Stuttgart, 1990; K. B.
Dillon, F. Mathey and J. F. Nixon, Phosphorus: The Carbon Copy, John
Wiley & Sons, Chichester, 1998.
3 S. M. Aucott, A. Z. S. Slawin and J. D. Woollins, Eur. J. Inorg. Chem.,
2002, 2408.
4 M. J. Baker, M. F. Giles, A. G. Orpen, M. J. Taylor and R. J. Watt, J.
Chem. Soc., Chem. Commun., 1995, 197.
5 F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami and M.
Yoshifuji, J. Am. Chem. Soc., 2002, 124, 10968; T. Minami, H.
Okamoto, S. Ikeda, R. Tanaka, F. Ozawa and M. Yoshifuji, Angew.
Chem., Int. Ed., 2001, 40, 4501; F. Ozawa, S. Yamamoto, S. Kawagishi,
M. Hiraoka, S. Ikeda, T. Minami, S. Ito and M. Yoshifuji, Chem. Lett.,
2001, 973; S. Ikeda, F. Ohhata, M. Miyoshi, R. Tanaka, T. Minami, F.
Ozawa and M. Yoshifuji, Angew. Chem., Int. Ed., 2000, 39, 4512; K.
Toyota, K. Masaki and M. Yoshifuji, Chem. Lett., 1995, 221.
6 L. Weber, Angew. Chem., Int. Ed., 2002, 41, 563.
7 M. Doux, N. Mézailles, M. Melaimi, L. Ricard and P. Le Floch, Chem.
Commun., 2002, 1566; O. Daugulis, M. Brookhart and P. S. White,
Organometallics, 2002, 21, 5935.
8 K. M. Pietrusiewicz, M. Kuznikowski, W. Wieczorek and A. Brandi,
Heteroat. Chem., 1992, 3, 37.
9 L. Hirsivaara, M. Haukka, S. Jääskeläinen, R. H. Laitinen, E. Niskanen,
T. A. Pakkanen and J. Pursiainen, J. Organomet. Chem., 1999, 579,
45.
10 S. O. Grim and J. D. Mitchell, Inorg. Chem., 1977, 16, 1762.
11 P. P. Boyle and S. M. Godfrey, Coord. Chem. Rev., 2001, 223, 265; E.
Seppälä, F. Ruthe, J. Jeske, W.-W. du Mont and P. G. Jones, Chem.
Commun., 1999, 1471.
12 D. C. Apperley, N. Bricklebank, S. L. Burns, D. E. Hibbs, M. B.
Hursthouse and K. M. A. Malik, J. Chem. Soc., Dalton Trans., 1998,
1289.
Fig. 3 An ORTEP drawing of 5 with 30% probability ellipsoids. Hydrogen
atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): I1–
I2 2.8122(9), I1–S 2.809(2), Cl–C1 1.723(8), S–P1 1.990(3), P1–C1
1.822(8), 1.811(9), P2–C1 1.678(8), P2–CMes* 1.843(3), I2–I1–S 174.90(5),
I1–S–P1 98.44(10), S–P1–C1 109.2(3), Cl–C1–P1 112.4(4), Cl–C1–P2
118.7(5), P1–C1–P2 118.7(5), C1–P2–CMes* 100.2(4).
13 J. Emsley, The Elements, 3rd edn, Oxford University Press, NY,
1998.
CHEM. COMMUN., 2003, 398–399
399