C O M M U N I C A T I O N S
Scheme 3. Synthesis of the Diene Fragment 18a
Figure 2. Endo transition state of the IMDA cyclization.
a Reagents and conditions: (a) 14 (1.02 equiv), NaH (1.02 equiv), THF,
5 h, 0 °C f rt; (b) DIBAL-H (3.0 equiv), THF, 2 h, -78 °C; (c) Ph3PEtBr
(1.5 equiv), NaHMDS (1.5 equiv), THF, 12 h, -78 °C f rt; (d) BCl3 (1.4
equiv), CH2Cl2, 1 h, -40 f -10 °C; (e) Im (2.0 equiv), Ph3P (2.0 equiv),
I2 (2.0 equiv), benzene, 2 h, rt (NaHMDS ) sodium bis(trimethylsilyl)a-
mide).
natural 11a: [R]25D +133.0 (c ) 0.45, CHCl3). This means that we
have synthesized the natural enantiomer of 1 on a stereochemically
unambiguous route and have thus proven its absolute configuration.
In conclusion we have accomplished a convergent and highly
stereocontrolled total synthesis of elisabethin A (1) in 17-20 steps
and 7% overall yield along the longest linear sequence. The
synthesis is flexible and potentially allows the introduction of a
variety of nonnatural substituents. The preparation of such analogues
and the evaluation of the bioprofile of 1 is currently underway in
our laboratory.
Scheme 4. Completion of the Total Synthesisa
Acknowledgment. A Kekule´ fellowship (to T.J.H.) from the
“Fonds der chemischen Industrie” and financial support (project
P14729-CHE) from the Austrian Research Fund (FWF) is gratefully
acknowledged. Thanks are also due to Dr. Hanspeter Kaehlig for
help with the NMR spectra and Sabine Schneider for HPLC
separations.
Supporting Information Available: Detailed experimental pro-
cedures and characterization data for 4, 11a/b, 18, 19a/b; copies of 1H
and 13C NMR spectra of Diels-Alder adduct 4 and synthetic elisabethin
A (PDF). This material is available free of charge via the Internet at
References
a Reagents and conditions: (a) NaHMDS (1.1 equiv), then 18 (1.5 equiv),
HMPA (10 equiv), THF, 4 h, -78 f -40 °C; for 19b: 30 equiv HMPA,
-78 °C f rt; (b) LiBH4 (1.1 equiv), H2O (1.1 equiv), Et2O, 2 h, 0 °C; (c)
(COCl)2 (2.0 equiv), DMSO (4.0 equiv), Et3N (6.0 equiv), CH2Cl2, -78
°C f rt; (d) (CH3)2CHPPh3I (2.0 equiv), n-BuLi (2.0 equiv), THF, 4 h, 0
°C; (e) TBAF (2.4 equiv), THF, 1 h, rt, then FeCl3 (10 equiv), H2O, 6 h,
rt; (f) Pd/C (0.1 equiv), H2 (1 atm), EtOAc, 1 h, rt; (g) NaOH (5 equiv),
MeOH/H2O, 5 h, 80 °C; (h) BBr3 (6 equiv), THF, 0.5 h, -100 °C. (HMPA
) hexamethylphosphoramide).
(1) Elisabethin and elisapterosin: (a) Rodr´ıguez, A. D.; Gonza´lez, E.; Huang,
S. D. J. Org. Chem. 1998, 63, 7083. (b) Rodr´ıguez, A. D.; Ram´ırez, C.;
Rodr´ıguez, I. I.; Barnes, C. L. J. Org. Chem. 2000, 65, 1390. Columbia-
sin: (c) Rodr´ıguez, A. D.; Ram´ırez, C. Org. Lett. 2000, 2, 507.
(2) Total synthesis of 3: (a) Nicolaou, K. C.; Vassilikogiannakis, G.;
Ma¨gerlein, W.; Kranich, R. Angew. Chem., Int. Ed. 2001, 40, 2482. (b)
Nicolaou, K. C.; Vassilikogiannakis, G.; Ma¨gerlein, W.; Kranich, R. Chem.
Eur. J. 2001, 7, 5359. Total synthesis of 2 and 3: Kim, A. I.; Rychnovsky,
S. D. Angew. Chem., Int. Ed. 2003, 42. In press.
(3) For earlier work, see: (a) Heckrodt, T. J.; Mulzer, J. Synthesis 2002, 1857.
For an approach to an unfunctionalized racemic elisabethin A skeleton,
see: (b) Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S.; Sugita, K. Angew.
Chem., Int. Ed. 2001, 40, 2145. (c) Nicolaou, K. C.; Sugita, K.; Baran, P.
S.; Zhong, Y.-L. J. Am. Chem. Soc. 2002, 124, 2221.
(3) the high yield and stereoselectivity (1H NMR: no isomers
detectable, HPLC: less than 3%).
The relative configuration of 4 was confirmed by extensive
NOESY experiments. The observed stereochemical course of the
IMDA reaction can be rationalized in terms of the endo transition-
state geometry shown in Figure 2. The facial selectivity of the
diene-quinone attack is controlled by a minimization of allylic
strain between the substituents at C9 and the quinoid carbonyl
functionality. Selective hydrogenation of the disubstituted olefin 4
followed by base-catalyzed epimerization at C2 and cleavage of
the methyl ether with BBr3 led to compound 1, whose NMR, MS,
and IR data were in agreement with those reported for the natural
elisabethin A. The optical rotation of 1 compared well to the
(4) For a recent review on DA reactions, see: (a) Nicolaou, K. C.; Snyder,
S. A.; Montagnon, T.; Vassilikogiannakis, G. E. Angew. Chem., Int. Ed.
2002, 41, 1668. For quinone-based IMDA reactions, see (b) refs 2 a,b.
(c) Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem. Soc. 2002,
124, 773.
(5) Luly, J. R.; Rapoport, H. J. Org. Chem. 1981, 46, 2745.
(6) Kosugi, M.; Negishi, Y.; Kameyama, M.; Migita, T. Bull. Chem. Soc.
Jpn. 1985, 58, 3383.
(7) Prashad, M.; Kim, H.-Y.; Har, D.; Repic, O.; Blacklock, T. J. Tetrahedron
Lett. 1998, 39, 9369.
(8) Mulzer, J.; Dupre´, S.; Buschmann, J.; Luger, P. Angew. Chem., Int. Ed.
Engl. 1993, 32, 1452.
(9) For FeCl3 oxidations see: Rodd’s Chemistry of Carbon Compounds, 2nd
ed.; Elsevier Science: Amsterdam, London, New York, 1974; Vol. III B,
p 10 ff.
literature value (synthetic 1: [R]25 +129.7 (c ) 0.05, CHCl3),
JA034397T
D
9
J. AM. CHEM. SOC. VOL. 125, NO. 16, 2003 4681