Communications
Yekta, A. K. Yudin, Chem. Rev. 2003, 103, 3155; b) P. Kocovsky,
meso-linked-binol. The chirality of ligand 3b should be con-
trolled by (S)-biphenol-(S)-binol on complexation with the zinc
center because the pseudo-meso-(R)-biphenol-(S)-binol-type
complex would afford products in low enantiomeric excess.
[15] In terms of cost efficiency, 3b and 3c are also superior to 1a: 2,2’-
biphenol (500 g; Aldrich) and 2-phenylphenol (500 g; Aldrich).
[16] The reaction profiles with other ligands are summarized in the
Supporting Information.
S. Vyskocil, M. Smrcina, Chem. Rev. 2003, 103, 3213.
[3] For the oxygen-linked-binol 1a, see: a) S. Matsunaga, J. Das, J.
Roels, E. M. Vogl, N. Yamamoto, T. Iida, K. Yamaguchi, M.
Shibasaki, J. Am. Chem. Soc. 2000, 122, 2252; b) S. Matsunaga, T.
Ohshima, M. Shibasaki, Adv. Synth. Catal. 2002, 344, 4; for the
sulfur-linked-binol 1b, see: c) N. Kumagai, S. Matsunaga, T.
Kinoshita, S. Harada, S. Okada, S. Sakamoto, K. Yamaguchi, M.
Shibasaki, J. Am. Chem. Soc. 2003, 125, 2169; for the nitrogen-
linked-binol 1c, see: d) K. Majima, R. Takita, A. Okada, T.
Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2003, 125, 15837.
[4] For the design and application of related chiral ligands, see:
a) E. M. Vogl, S. Matsunaga, M. Kanai, T. Iida, M. Shibasaki,
Tetrahedron Lett. 1998, 39, 7917; b) H. Ishitani, T. Kitazawa, S.
Kobayashi, Tetrahedron Lett. 1999, 40, 2161; c) T. Harada, Y.
Hiraoka, T. Kusukawa, Y. Marutani, S. Matsui, M. Nakatsugawa,
K. Kanda, Org. Lett. 2003, 5, 5059; d) S. Kobayashi, K. Arai, H.
Shimizu, Y. Ihori, H. Ishitani, Y. Yamashita, Angew. Chem. 2005,
117, 771; Angew. Chem. Int. Ed. 2005, 44, 761.
[5] a) N. Kumagai, S. Matsunaga, N. Yoshikawa, T. Ohshima, M.
Shibasaki, Org. Lett. 2001, 3, 1539; b) N. Yoshikawa, N.
Kumagai, S. Matsunaga, G. Moll, T. Ohshima, T. Suzuki, M.
Shibasaki, J. Am. Chem. Soc. 2001, 123, 2466; see also Ref. [3c]
[6] a) S. Harada, N. Kumagai, T. Kinoshita, S. Matsunaga, M.
Shibasaki, J. Am. Chem. Soc. 2003, 125, 2582; b) S. Matsunaga, T.
Kinoshita, S. Okada, S. Harada, M. Shibasaki, J. Am. Chem. Soc.
2004, 126, 7559.
[17] For reviews of catalytic asymmetric Mannich-type reactions, see:
a) S. Kobayashi, M. Ueno in Comprehensive Asymmetric
Catalysis Supplement I (Eds.: E. N. Jacobsen, A. Pfaltz, H.
Yamamoto), Springer, Berlin, 2003, chap. 29.5, p. 143; b) A.
Cꢀrdova, Acc. Chem. Res. 2004, 37, 102; for selected recent
examples of direct catalytic asymmetric Mannich(-type) reac-
tions, see also; c) B. List, P. Pojarliev, W. T. Biller, H. J. Martin, J.
Am. Chem. Soc. 2002, 124, 827; d) A. Cꢀrdova, W. Notz, G.
Zhong, J. M. Betancort, C. F. Barbas III, J. Am. Chem. Soc. 2002,
124, 1842; e) A. Cꢀrdova, S.-I. Watanabe, F. Tanaka, W. Notz,
C. F. Barbas III, J. Am. Chem. Soc. 2002, 124, 1866; f) K. Juhl, N.
Gathergood, K. A. Jørgensen, Angew. Chem. 2001, 113, 3083;
Angew. Chem. Int. Ed. 2001, 40, 2995; g) B. M. Trost, L. R.
Terrell, J. Am. Chem. Soc. 2003, 125, 338; h) Y. Hayashi, W.
Tsuboi, I. Ashimine, T. Urushima, M. Shoji, K. Sakai, Angew.
Chem. 2003, 115, 3805; Angew. Chem. Int. Ed. 2003, 42, 3677;
i) W. Zhuang, S. Saaby, K. A. Jørgensen, Angew. Chem. 2004,
116, 4576; Angew. Chem. Int. Ed. 2004, 43, 4476; j) D. Uraguchi,
M. Terada, J. Am. Chem. Soc. 2004, 126, 5356, and references
therein.
[7] Y. S. Kim, S. Matsunaga, J. Das, A. Sekine, T. Ohshima, M.
Shibasaki, J. Am. Chem. Soc. 2000, 122, 6506; see also Ref. [3d]
[8] a) S. Matsunaga, N. Kumagai, S. Harada, M. Shibasaki, J. Am.
Chem. Soc. 2003, 125, 4712; b) S. Matsunaga, T. Yoshida, H.
Morimoto, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2004,
126, 8777.
[18] The best TON was achieved using 0.02 mol% of 1a ([ligand
1a] = 0.21 mm, TON = 4900)[8b]; however, the concentration of
1a had to be > 0.2 mm to promote the reaction efficiently.
Under similar conditions given in Scheme 2 ([ligand 1a] =
0.1 mm, 0.01 mol%), TON < 4000.
[19] In the present Mannich-type reaction, the ratio of Et2Zn/ligand
(1a or 3c) did not affect enantioselectivity. Et2Zn/1a (2 mol% of
1a): 2:1 (> 99% ee, d.r. 98:2, 2 h, > 95% yield), 3:1 (> 99% ee,
d.r. 98:2, 1 h, > 95% yield), 4:1 (> 99% ee, d.r. 98:2, 1 h, > 95%
yield); Et2Zn/3c (2 mol% of 3c): 2:1 (99% ee, d.r. 99:1, 1 h,
> 95% yield), 3:1 (98% ee, d.r. 98:2, 1 h, > 95% yield), 4:1
(98% ee, d.r. 98:2, 1 h, > 95% yield); thus, we assumed that a
similar active species formed under these reaction conditions,
and that the structural information obtained with Et2Zn/ligand
(2:1) would give some insight into the properties of 3c.
[20] ESI mass spectra as well as the 1H NMR and 13C NMR spectra of
Et2Zn/3c (2:1) are given in the Supporting Information. The ESI
mass-spectrometric analysis showed several signals that corre-
spond to the Zn/3c (3:2) trinuclear complex, depending on the
natural-isotope distribution pattern of zinc.
[9] For selected, recent, related examples using a conformationally
flexible biphenyl unit in asymmetric catalysis, see: a) K. Mikami,
T. Korenaga, M. Terada, T. Ohkuma, T. Pham, R. Noyori,
Angew. Chem. 1999, 111, 517; Angew. Chem. Int. Ed. 1999, 38,
495; b) J. Balsells, P. J. Walsh, J. Am. Chem. Soc. 2000, 122, 1802;
c) T. Ooi, Y. Uematsu, M. Kameda, K. Maruoka, Angew. Chem.
2002, 114, 1621; Angew. Chem. Int. Ed. 2002, 41, 1551; d) Z. Luo,
Q. Liu, L. Gong, X. Cui, A. Mi, Y. Jiang, Angew. Chem. 2002,
114, 4714; Angew. Chem. Int. Ed. 2002, 41, 4532; for other
examples, see: e) K. Mikami, M. , Yamanaka, Chem. Rev. 2003,
103, 3369; f) P. J. Walsh, A. E. Lurain, J. Balsells, Chem. Rev.
2003, 103, 3297; g) J. W. Faller, A. R. Lavoie, J. Parr, Chem. Rev.
2003, 103, 3345; h) A. Alexakis, C. Benhaim, Eur. J. Org. Chem.
2002, 3221.
[10] For “chiral economy” in total synthesis, see: A. Fischli, Chimia
1976, 30, 4; for “chirality economy” in asymmetric catalysis, see
Ref. [9e]
[21] The rate-limiting step of the Mannich-type reaction of 4a with 5
was determined to be a catalyst-turnover step by kinetic studies
on the initial rate; see Ref. [8b]
[11] For characterization of the Zn/linked-binol 1a (3:2) complex,
see Ref. [3c]: mechanistic studies conducted therein reported that
the actual active species was supposed to have
a more
complicated structure that incorporated hydroxy ketone 5;
ESI-mass-spectrometric analysis revealed that a Zn/linked-
binol/ketone 5 (7:3:4) complex could be an active species
under the reaction conditions.
[12] For reviews on nonlinear effects, see: a) C. Girard, H. B. Kagan,
Angew. Chem. 1998, 110, 3088; Angew. Chem. Int. Ed. 1998, 37,
2922; b) H. B. Kagan, Adv. Synth. Catal. 2001, 343, 227; c) D. G.
Blackmond, Acc. Chem. Res. 2000, 33, 402.
[13] For the synthesis and spectra of ligands 3a–k, see the Supporting
Information.
[14] The initial reaction rate of the Mannich-type reaction with a
meso-linked-binol derivative prepared from (S)-binol and (R)-
binol units was estimated relative to that of (S,S)-linked-binol
1a. A similar initial reaction rate was observed for 1a and the
3474
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 3470 –3474