C O M M U N I C A T I O N S
(2) Handbook of EnantioselectiVe Catalysis; Brunner, H., Zettlmeier, W., Eds.;
VCH: New York, 1993; Vol. 2.
(3) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.;
Noyori, R. J. Am. Chem. Soc. 1980, 102, 7933.
(4) (a) Schmid, R.; Foricher, J.; Cereghetti, M.; Schonholzer, P. HelV. Chim.
Acta 1991, 74, 370. (b) Zhang, X.; Uemura, T.; Matsumura, K.; Sayo,
N.; Kumobayashi, H.; Takaya, H. Synlett 1994, 501. (c) Uemura, T.;
Zhang, X.; Matsumura, K.; Sayo, N.; Kumobayashi, H.; Ohta, T.; Nozaki,
K.; Takaya, H. J. Org. Chem. 1996, 61, 5510. (d) Gelpke, A. E. S.;
Kooijman, H.; Spek, A. L.; Hiemstra, H. Chem. Eur. J. 1999, 5, 2472.
(e) Benincori, T.; Cesarotti, E.; Piccolo, O.; Sannicolo`, F. J. Org. Chem.
2000, 65, 2043. (f) Benincori, T.; Piccolo, O.; Rizzo, S.; Sannicolo`, F. J.
Org. Chem. 2000, 65, 8340. (g) Pai, C.-C.; Lin, C.-W.; Chen, C.-C.; Chan,
A. S. C.; Wong, W. T. J. Am. Chem. Soc. 2000, 122, 11513. (h) Saito,
T.; Yokoawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumoba-
yashi, H. AdV. Synth. Catal. 2001, 343, 264.
(5) (a) Togni, A.; Breutel, U.; Schnyder, A.; Spindler, F.; Landert, H.; Tijiani,
A. J. Am. Chem. Soc. 1994, 116, 4062. (b) Pye, P. J.; Rossen, K.; Reamer,
R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997,
119, 6207. (c) Pye, P. J.; Rossen, K.; Reamer, R. A.; Volante, R. P.; Reider,
P. J. Tetrahedron Lett. 1998, 39, 4441.
(6) For an example of spiro phosphinite ligands, see: Chan, A. C. S.; Hu,
W.-H.; Pai, C.-C.; Lau, C.-P.; Jiang, Y.-Z.; Mi, A.-Q.; Yan, M.; Sun, J.;
Lou, R.-L.; Deng, J.-G. J. Am. Chem. Soc. 1997, 119, 9570.
(7) SIPHOS ) N-dialkyl-(1,1′-spirobiindane-7,7′-diyl)phosphoramidite. (a) Fu,
Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Chem.
Commun. 2002, 480. (b) Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang,
L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2002, 41, 2348.
(8) (a) Birman, V. B.; Rheingold, A. L.; Lam, K.-C. Tetrahedron: Asymmetry
1999, 10, 125. (b) Zhang, J.-H.; Liao, J.; Cui, X.; Yu, K.-B.; Deng, J.-G.;
Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L.; Chung, L.-W.; Ye, T. Tetrahe-
dron: Asymmtry 2002, 13, 1363.
Figure 1.
Table 1. Asymmetric Hydrogenation of Ketonesa
ketone
c
entry cat.
Ar
R
time (h) convnb (%)
ee (%)
1
2
3
7a C6H5
7b C6H5
7c C6H5
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
C2H5
PhCH2
CH3
CH3
CH3
CH3
1.5
3
100
99
90 (S)
89 (S)
92 (S)
99 (S)
98 (S)
98 (S)
99.2 (S)
99.2 (S)
99 (S)
99.2 (S)
98 (S)
99 (S)
99 (S)
99.5 (S)
98 (S)
99.2 (S)
98 (S)
98 (S)
98 (S)
96 (S)
2.5
1.5
72
100
100
98
4
7d C6H5
7d C6H5
5d
6
7d o-ClC6H4
7d o-BrC6H4
7d m-BrC6H4
7d m-CF3C6H4
7d p-CH3C6H4
7d p-OCH3C6H4
7d p-ClC6H4
7d p-BrC6H4
7d C6H5
3.5
6.5
3
99
100
99
7
8
9
10
11
12
13
14
15
16
2
99
1.5
4.5
1.5
3
100
100
100
100
99
(9) Uozumi, Y.; Tanahashi, A.; Lee, S.-Y.; Hayashi, T. J. Org. Chem. 1993,
58, 1945.
(10) For experimental details, see the Supporting Information.
(11) (a) Noyori, R.; Takaya, H. Acc Chem. Res. 1990, 23, 345. (b) Burk, M.
J.; Gross, M. F.; Harper, G. P.; Kalberg, C. S.; Lee, J. R.; Martinez, J. P.
Pure Appl. Chem. 1996, 68, 37. (c) Naota, T.; Takaya, H.; Murahashi, S.
Chem. ReV. 1998, 98, 2599. (d) Ireland, T.; Tappe, K.; Grossheimann,
G.; Knochel, P. Chem. Eur. J. 2002, 8, 843.
(12) (a) Bakos, J.; To´th, I.; Heil, B.; Marko´, L. J. Organomet. Chem. 1985,
279, 23. (b) Zhang, X.; Taketomi, T.; Yoshizumi, T.; Kumobayashi, H.;
Akutagawa, S.; Mashima, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115,
3318. (c) Jiang, Q.; Jiang, Y.; Xiao, D.; Cao, P.; Zhang, X. Angew. Chem.,
Int. Ed. 1998, 37, 1100.
(13) (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1995, 117, 2675. (b) Ohkuma, T.; Ooka, H.; Yamakawa, M.;
Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 10417. (c) Ohkuma,
T.; Ooka, H.; Yamakawa, M.; Ikariya, T.; Noyori, R. J. Org. Chem. 1996,
61, 4872. (d) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa,
M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. Angew. Chem.,
Int. Ed. 1998, 37, 1703. (e) Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham,
T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1998, 120, 13529. (f) Noyori, R.; Ohkuma,
T. Angew. Chem., Int. Ed. 2001, 40, 40.
3.5
7d C6H5
7d 2-naphthyl
46
100
98
100
99
98
100
4
5
5
5
3
17e 7d ferrocenyl
18
19
20f
7d 2-furyl
7d 2-thienyl
7d trans-PhCHdCH CH3
a Reactions were conducted at 20-25 °C under 50 atm of H2 pressure
using a 2.0-2.5 M solution in 2-propanol containing (S,RR)-7d (S/C )
5000) and t-BuOK (S/B ) 70). b Determined by GC or 1H NMR. c The ee
were determined by chiral GC or HPLC. The absolute configuration was
determined by comparison of the sign of optical rotation or retention time
with 1iterature data. d S/C ) 100 000, at 40 °C. e Using a 1.0 M solution
in 2-propanol, S/B ) 50. f S/B ) 50.
complexes for the hydrogenation of a variety of prochiral ketones
indicated a good potential for wide application of these spiro
diphosphine ligands. Studies of these spiro ligands in other transition
metal catalyzed asymmetric reactions are in progress.
(14) Xyl-BINAP ) 2.2′-bis(di-3,5-xylylphosphino)-1,1′-binaphthyl. Tol-BINAP
) 2,2′-bis(di-4-tolylphosphino)-1,1′-binaphthyl. DAIPEN ) 1,1-dianisyl-
2-isopropyl-1,2-ethylenediamine. DPEN ) 1,2-diphenylethylenediamine.
(15) PhanePhos
) 4,12-bis(diphenylphospino)-[2,2]paracyclophane. Xyl-
PhanePhos ) 4,12-bis(di-3,5-xylylphospino)-[2,2]paracyclophane. See:
Burk, M. J.; Hems, W.; Herzberg, D.; Malan, C.; Zanotti-Gerosa, A. Org.
Lett. 2000, 2, 4173.
Acknowledgment. We thank the National Natural Science
Foundation of China, the Major Basic Research Development
Program (Grant G2000077506), and the Ministry of Education of
China for financial support.
(16) P-Phos ) 2,2′,6,6′-tetramethoxy-4,4′-bis(diphenylphosphino)-3,3′-bipy-
ridine. See: Wu, J.; Chen, H.; Kwok, W.-H.; Guo, R.-W.; Zhou, Z.-Y.;
Yeung, C.-H.; Chan, A. S. C. J. Org. Chem. 2002, 67, 7908.
(17) (2R,2′R)-Bis(diphenylphosphino)-(1R,1′R)-dicyclopentane (BICP) was also
tested in this reaction, providing the enantioselctivities which are lower
by 10-20% ee than those obtained with Noyori’s BINAP-Ru-diamine
system, see: Cao, P.; Zhang, X. J. Org. Chem. 1999, 64, 2127.
(18) With the catalyst (S,SS)-7d, which represents a mismatch in chirality
between SDP and DPEN, (S)-1-phenylethanol was produced in 28% ee.
(19) [((S)-Tol-BINAP)Ru((S)-DAIPEN)Cl2] (87% ee) and [((S)-Xyl-Phane-
Phos)Ru((R,R)-DPEN)Cl2] (92% ee) were also used in the hydrogenation
of acetylferrocene, see refs 13f and 15.
Supporting Information Available: Preparations and properties
of compounds 2-6 and 7, procedures for asymmetric hydrogenation
of ketones, GC behavior of chiral alcohols (PDF). This material is
References
(20) For review, see: Togni, A. Angew. Chem., Int. Ed. Engl. 1996, 35, 1475.
For recent articles, see: (a) Du¨bner, F.; Knochel, P. Angew. Chem., Int.
Ed. 1999, 38, 379. (b) Schwink, L.; Knochel, P. Chem. Eur. J. 1998, 5,
950.
(1) For reviews, see: (a) ComprehensiVe Asymmetric Catalysis; Jacobsen,
E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. I-III.
(b) Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley: New
York, 2000. (c) Lin, G.-Q.; Li, Y.-M.; Chan, A. S. C. Principles and
Applications of Asymmetric Synthesis; Wiley: New York, 2001.
JA029907I
9
J. AM. CHEM. SOC. VOL. 125, NO. 15, 2003 4405