7798 J. Phys. Chem. A, Vol. 111, No. 32, 2007
Jiang et al.
in Table 3, the calculated 12C16O2/13C16O2 and 12C16O2/12C18O2
isotopic frequency ratios of 1.0235 and 1.0235 are consistent
with the experimental values of 1.0229 and 1.0235, respectively.
The Co-O stretching vibration is predicted to be 891.1 cm-1
(Table 4), which has relatively small intensity (16 km/mol) and
is not readily observed, consistent with the absence from the
present experiments.
cm-1 in argon and 2045.0 and 790.1 cm-1 in neon are assigned
to the C-O and Rh-O stretching vibrations of the ORhCO
molecule, respectively. The O2RhCO and ORhCO- molecules
have also been observed in the rare-gas matrixes. Previous argon
matrix investigations of the reactions of laser-ablated Co metal
atoms with CO2 molecules have characterized the OCoCO,
OCoCO-, and CoCO2- molecules.23 Present neon experiments
produce new absorptions of the O2CoCO, OCo2CO, and
OCoCO+ molecules. Density functional theory calculations have
been performed on these products, which support the experi-
mental assignments of the infrared spectra.
Reaction Mechanism
On the basis of the behavior of sample annealing and
irradiation, together with the observed species and calculated
stable isomers, a plausible reaction mechanism can be proposed
as follows. Under the present experimental conditions, the
OMCO (M ) Rh, Co) molecules are the primary products
during sample deposition (Figures 1, 3, and 5), suggesting that
the spontaneous insertion of laser-ablated Rh and Co atoms into
CO2 to form the OMCO molecules is the dominant process
(reaction 1). Similar findings have also been found for the groups
3-10 transition metal atoms.15-23 Theoretical investigations
reveal that the insertion of metal atoms into CO2 to form the
OMCO molecules needs a low or no energy barrier:15-23,32,53
Acknowledgment. The authors would like to express thanks
to the reviewers for valuable suggestions. We gratefully
acknowledge financial support for this research by a Grant-in-
Aid for Scientific Research (B) (Grant 17350012) from the
Ministry of Education, Culture, Sports, Science and Technology
(MEXT) of Japan. L.J. thanks MEXT of Japan and Kobe
University for an Honors Scholarship.
References and Notes
(1) Palmer, D. A.; van Eldik, R. Chem. ReV. 1983, 83, 651.
(2) Culter, A. R.; Hanna, P. K.; Vites, J. C. Chem. ReV. 1988, 88, 1363.
(3) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. ReV. 1995, 95, 259.
(4) Freund, H. J.; Roberts, M. W. Surf. Sci. Rep. 1996, 25, 225.
(5) Gibson, D. H. Chem. ReV. 1996, 96, 2063.
(6) Gibson, D. H. Coord. Chem. ReV. 1999, 185-186, 335.
(7) Solymosi, F. J. Mol. Catal. 1991, 65, 337.
(8) Creutz, C. In Electrochemical and Electrocatalytic Reactions of
Carbon Dioxide; Sullivan, B. P., Krist, K., Guard, H. E., Eds.; Elsevier:
Amsterdam, 1993.
M + CO2 f OMCO
(M ) Rh, Co)
(1)
The observation of RhO, (RhO)x, CoO, and CO shows the
presence of the O atoms and the CO molecules. The decom-
position of the OMCO molecule may proceed by radiation
during sample deposition (reaction 2). The O2MCO molecule
may be formed from the reaction of the OMCO molecule with
the O atom (reaction 3) or with another CO2 molecule (reactions
4 and 5). Under the experimental conditions of higher laser
energy, the OCo2CO molecule is generated by the addition of
the Co atom to the OCoCO molecule (reaction 6):
(9) Erdohelyi, A.; Cserenyi, J.; Solymosi, F. J. Catal. 1993, 144, 287.
(10) Chen, Y. G.; Tomishige, K.; Yokoyama, K.; Fujimoto, K. Appl.
Catal., A 1997, 165, 335.
(11) Kafafi, Z. H.; Hauge, R. H.; Billups, W. E.; Margrave, J. L. J. Am.
Chem. Soc. 1983, 105, 3886 (Li + CO2).
(12) Kafafi, Z. H.; Hauge, R. H.; Billups, W. E.; Margrave, J. L. Inorg.
Chem. 1984, 23, 177 (Cs + CO2).
OMCO f MO + CO
(2)
(3)
(13) Andrews, L.; Tague, T. J., Jr. J. Am. Chem. Soc. 1998, 120, 13230
(Be + CO2).
OMCO + O f O2MCO
(14) Solov’ev, V. N.; Polikarpov, E. V.; Nemukhin, A. V.; Sergeev, G.
B. J. Phys. Chem. A 1999, 103, 6721 (Mg + CO2).
(15) Zhou, M. F.; Andrews, L. J. Am. Chem. Soc. 1998, 120, 13230
(Sc, Y + CO2).
MO + CO2 f O2MCO
OMCO + CO2 f O2MCO + CO
OCoCO + Co f OCo2CO
(4)
(5)
(6)
(16) Mascetti, J.; Tranquille, M. J. Phys. Chem. 1988, 92, 2177; Coord.
Chem. ReV. 1999, 190-192, 557 (Ti, V, Cr, Fe, Co, Ni, Cu + CO2).
(17) Chertihin, G. V.; Andrews, L. J. Am. Chem. Soc. 1995, 117, 1595
(Ti + CO2).
(18) Zhou, M. F.; Andrews, L. J. Phys. Chem. A 1999, 103, 2066 (Ti,
V + CO2).
Recent investigations have shown that laser ablation of metal
targets produces not only neutral metal atoms, but also metal
cations and electrons, and ionic metal complexes can also be
formed in the reactions with small molecules.51 In the present
experiments, the OMCO- anion appears during sample deposi-
tion and changes little after sample annealing (Figure 3),
suggesting that this anion may be generated by electron capture
by neutral OMCO during codeposition (reaction 7). In addition,
the OCoCO+ molecule may be formed from the reaction of the
Co+ cation with CO2 (reaction 8):
(19) Zhang, L.; Wang, X.; Chen, M.; Qin, Q. Z. Chem. Phys. 2000,
254, 231 (Zr + CO2).
(20) Chen, M.; Wang, X.; Zhang, L.; Qin, Q. Z. J. Phys. Chem. A 2000,
104, 7010 (Nb + CO2).
(21) Wang, X.; Chen, M.; Zhang, L.; Qin, Q. Z. J. Phys. Chem. A 2000,
104, 758 (Ta + CO2).
(22) Souter, P. F.; Andrews, L. Chem. Commun. 1997, 777; J. Am. Chem.
Soc. 1997, 119, 7350 (Cr, Mo, W + CO2).
(23) Zhou, M. F.; Liang, B.; Andrews, L. J. Phys. Chem. A 1999, 103,
2013 (Cr-Zn + CO2).
(24) Liang, B.; Andrews, L. J. Phys. Chem. A 2002, 106, 595 (Re +
CO2).
(25) Liang, B.; Andrews, L. J. Phys. Chem. A 2002, 106, 4042 (Os, Ru
+ CO2).
OMCO + e- f OMCO-
Co+ + CO2 f OCoCO+
(7)
(8)
(26) Andrews, L.; Zhou, M. F.; Liang, B.; Li, J.; Bursten, B. E. J. Am.
Chem. Soc. 2000, 122, 11440 (U, Th + CO2).
(27) Bulkholder, T. R.; Andrews, L.; Bartlett, R. J. J. Phys. Chem. 1993,
97, 3500 (B + CO2).
(28) Quere, A. M. L.; Xu, C.; Manceron, L. J. Phys. Chem. 1991, 95,
3031 (Al + CO2).
Conclusions
Reactions of laser-ablated Rh and Co atoms with CO2
molecules in solid argon and neon have been investigated using
matrix isolation infrared spectroscopy. On the basis of isotopic
shifts, mixed isotopic splitting patterns, ultraviolet irradiation,
and CCl4-doping experiments, absorptions at 2024.2 and 779.2
(29) Brock, L. R.; Duncan, M. A. J. Phys. Chem. 1991, 95, 3031 (Al +
CO2).
(30) Howard, J. A.; McCague, C.; Sutcliffe, R.; Tse, J. S.; Joly, H. A.
J. Chem. Soc., Faraday Trans. 1995, 91, 799 (Al, Ga + CO2).
(31) Himmel, H. J.; Downs, A. J.; Greene, T. M. Chem. ReV. 2002,
102, 4191, and references therein.