174
N. Kuz´nik et al. / Journal of Organometallic Chemistry 665 (2003) 167ꢁ175
/
decomposes. Solubility: very good in CH2Cl2, CHCl3,
benzene, Et2O; good in acetone; insoluble in hexane,
cyclohexane. Stability in solutions: stable in CH2Cl2,
acetone, less stable in CHCl3, benzene, decomposes fast
in Et2O. Stability in solutions under increased tempera-
ture: after heating in benzene up to about 60 8C it
partially decomposes into a red product. Anal. Calc. for
C68H55Cl2O2P3Ru2S2: C, 61.21; P, 6.96; Ru, 15.5; S,
4. Supplementary material
Crystallographic data have been deposited with the
Cambridge Crystallographic Data Centre as deposition
No. CCDC 175161. Copies of the data can be obtained,
free of charge, on application to The Director, CCDC,
12 Union Road, Cambridge CB2 1EZ, UK (Fax: ꢂ44-
1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www:
/
1
4.81%. Found: C, 61.21; P, 6.60; Ru, 15.6; S, 4.60. H-
NMR: (ppm), (300 MHz, 293 K): (CD2Cl2): 2,12 (s);
6.5ꢁ
31P-NMR: (CD2Cl2, 121.5 MHz, 293 K): 39.75 (dd, Jꢀ
12.2; Jꢀ15.9 Hz); 43,32 (dd, Jꢀ3.7; Jꢀ15.9); 52.28
(dd, Jꢀ12.2 Hz; Jꢀ
3.7 Hz); 13C-NMR: (CDCl3, 75.4
/
7.8 (m); (CDCl3): 2.14 (s); 5, 24 (s); 6.38ꢁ
/
7.60 (m).
/
/
/
/
References
/
/
MHz, 293 K): 30.91 (s); 3.45 (s); 124.92 (s); 125.69 (s);
126.95 (s); 127.21 (s); 127.44 (s); 127.51 (s); 127.56 (s);
[1] H. Su, Y. Hiwatari, M. Soenosawa, K. Sasuga, K. Shirai, T.
Kumamoto, Bull. Chem. Soc. Jpn. 66 (1993) 2603.
[2] W.H. Chan, W.M. Lee, E.T.T. Chan, J. Chem. Soc. Perkin Trans.
1 8 (1992) 945.
127.64 (s); 127.79 (s); 127.91 (s); 129.30 (d), Jꢀ
129.62 (d) Jꢀ9.6 Hz; 129,73 (d) Jꢀ9.6 Hz; 203.65 (s);
203.88 (t), Jꢀ6.4 Hz; IR (KBr): CꢁO: 1948, 1955
cmꢄ1, PPh3: 1090, 1430, 1480 cmꢄ1, Ar: 3050, 1625,
1610, 1582, 750, 700 cmꢄ1
/
7.5 Hz;
/
/
[3] W.J. Bailey, E.W. Cummins, J. Am. Chem. Soc. 76 (1954) 1932.
[4] Y.R. Lee, N.S. Kim, B.S. Kim, Tetrahedron Lett. 38 (1997) 5671.
[5] W.E. Parham, J. Org. Chem. 29 (1964) 2211.
[6] S.M. Leibovitz, H.J. Johnson, Synth. Commun. 16 (1986) 1255.
[7] J.J. Eisch, J.E. Galle, L.E. Hallenbeck, J. Org. Chem. 47 (1982)
1608.
/
/
.
[8] B. Tinant, J. Feneau-Dupont, J.P. Declercq, P. Nshimyumukiza,
Bull. Soc. Chim. Belg. 102 (1993) 635.
3.9. X-ray of [Ru2Cl2(PhS)2(CO)2(PPh3)3]*(3)
/
[9] N.S. Simpkins, Tetrahedron 46 (1990) 6951.
[10] O. Delucci, L. Pasquato, G. Madenn, Tetrahedron Lett. 25 (1984)
3643.
All measurements of diffraction intensities were
performed on a KUMA KM4 four-circle diffractometer
[11] P. Caramella, T. Bandiera, P. Grunanger, F. Marione Albini,
¨
Tetrahedron 40 (1984) 441.
[56], MoꢁKa radiation, v/2U scan mode. The struc-
/
tures were solved by direct methods using the program
SHELXS-97 [57] and refined by full-matrix least-squares
with the aid of the program SHELXL-97 [58]. Most of the
non-hydrogen atoms were refined anisotropically, some
of them were refined as restrained. The hydrogen
positions were calculated according to the standard
geometry, and refined as a riding model with isotropic
thermal parameters. Software used to prepare material
for publication ORTEP-3 [59].
[12] G. Bianchetti, D. Pocar, C. Torricelli, E. Arlandini, B. Gioia,
Gazz. Chim. Ital. 111 (1981) 315.
[13] T. Asaki, T. Aoyama, T. Shioiri, Heterocycles 27 (1988) 343.
[14] M. Isobe, M. Kitamura, T. Goto, Chem. Lett. (1980) 331.
[15] H. Tohma, H. Watanabe, S. Takizawa, T. Maegawa, Y. Kita,
Heterocycles 51 (1999) 1785.
[16] V. Svata, Collect. Czech. Chem. Commun. 43 (1978) 2619.
[17] H. Nishimura, J. Mizutani, J. Org. Chem. 40 (1975) 1567.
[18] C.C. Price, W.H. Snyder, J. Org. Chem. 27 (1962) 4639.
[19] D.S. Tarbell, W.E. Lovett, J. Am. Chem. Soc. 78 (1956) 2259.
[20] I. Sataty, C.Y. Meyers, Tetrahedron Lett. 47 (1974) 4161.
[21] H.J. Kuhn, R. Defoin, K. Gollnick, C. Krueger, Y.H. Tsay,
Tetrahedron 45 (1989) 1667.
Crystal data for 1. The crystal chosen for X-ray
analysis was a clear orange prism with the approximate
dimensions 0.4ꢃ
(MWꢀ
1329.22 g molꢄ1) crystallises in the monoclinic
system, space group P21/c, with aꢀ11.71(1), bꢀ
/
0.2ꢃ0.1 mm. Ru2S2P3Cl2O2C68H50
/
[22] L.A. Mukhamedova, L.I. Kursheva, M.A. Nechaeva, Khim.
Geterotsikl. Soedin. 18 (1982) 478.
/
[23] T. Chou, H.-H. Tso, L.-J. Chang, Chem. Soc. Perkin Trans. 1,
(1985) 515.
/
/
3
˚
˚
31.24(2), cꢀ
Zꢀ4, m(Moꢁ
cmꢄ3 a total of 5581 reflections were collected to
2Umax 48.58 (h: ꢄ 12), of
/
18.23(2) A, bꢀ
/
94.09(3)8, Vꢀ
/
6652(2) A ,
[24] T. Berranger, Y. Langlois, J. Org. Chem. 60 (1995) 1720.
[25] L. Horner, I. Ertel, H.-D. Ruprecht, O. Belovcky´, Chem. Ber. 103
(1970) 1582.
/
/
Ka)ꢀ
/
0.718 mmꢄ1, and Dcalc
ꢀ
/
1.437 g
ꢀ
/
/
100
/
10, k: 00
/
20, l: 00
/
[26] S. Krompiec, J. Suwinski, M. Gibas, J. Grobelny, Polish J. Chem.
70 (1996) 133.
which 5581 were unique. The intensity decay of the
reference reflections was 5.7%. In refinements, weights
[27] J.G. Planas, T. Marumo, Y. Ichikawa, M. Hirano, S. Komiya, J.
Mol. Catal. A: Chem. 147 (1999) 137.
were used according to the scheme wꢀ
(0.123P)2ꢂ (F2oꢂ2F2c)/3. The refine-
15P], where Pꢀ
ment of 772 parameters converged to the final agree-
ment factors Rꢀ0.0754, Rwꢀ0.2116, and Sꢀ1.011 for
2621 observed reflections with F ꢁ4s(Fo). The electron
/
1/[s2(F2o)ꢂ
/
[28] S. Komiya, T. Kabasawa, K. Yamashita, M. Hirano, A.
Fukuoka, J. Organomet. Chem. 471 (1994) C6.
/
/
/
[29] M. Hirano, N. Kurata, T. Marumo, S. Komiya, Organometallics
17 (1998) 501.
/
/
/
[30] K. Hiraki, Y. Fuchita, H. Kawabata, K. Iwamoto, T. Yoshimura,
H. Kawano, Bull. Chem. Soc. Jpn. 65 (1992) 3027.
[31] S. Krompiec, Izomeryzacja alkeno´w i ich funkcyjnie podstawio-
nych pochodnych katalizowana kompleksami rutenu, Zesz.
/
density of the largest difference peak was found to be
1.62 e Aꢄ3, while that of the largest difference hole was
˚
ꢄ3
˚
0.95 e A
´
Nauk. Pol. Sl. s. Chemia, Z 136 (1997).
.