1348
L.-Q. Sun et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1345–1349
Table 1. Ki of compounds 3a–g and 4a–f competing for the binding of
2-[125I]-iodomelatonin to membrane preparations of NIH3T3 cells
stably expressing human MT1 or MT2 melatonin receptor21,22
series of (R)-2-(4-phenylbutyl)dihydrobenzofuran deriv-
atives as more potent melatoninergic agents with signif-
icantly lower vasoconstrictive activity in vitro in the rat
tail artery. The highlights of the synthesis are an asym-
metric allylboration of an aldehyde containing an adja-
cent ester group and a stereoselective palladium-
catalyzed cyclopropanation of an N-enoyl sultam. Inter-
mediate 8 was exploited as the key precursor to a range
of chiral 2-substituted dihydrobenzofuran derivatives in
enantiopure form.
Ph
Ph
H
N
H
N
H
N
O
O
R
O
O
Cl
3a-f
3g
Ph
O
Acknowledgements
O
N
H
R
We thank and acknowledge Ms. Yi-Xin Li for NMR
data support, Mr. Robert Kane for MS data support,
and Dr. Nicholas A. Meanwell for valuable discussion
and assistance with the preparation of the manuscript.
4a-f
Compd
R
MT1 Ki (nM)
MT2 Ki (nM)
Mel
3a
3b
3c
3d
3e
3f
—
0.3
1
0.7
2
Me
Et
1
2
References and notes
nPr
iPr
cPr
2
2
6
90
5
1. Dement, W. C.; Mitler, M. M. J. Am. Med. Assoc. 1993,
269, 1548.
2. Yu, H.-S.; Reiter, R. J. Melatonin: Biosynthesis, Physio-
logical Effects, and Clinic Applications; Boca Raton: CRC,
1993.
3. Arendt, J. Melatonin and the Mammalian Pineal Gland;
Chapman and Hall: London, 1995.
4. Pevet, P.; Bothorel, B.; Slotten, H.; Saboureau, M. Cell
Tissue Res. 2002, 309, 183.
5. Oldani, A.; Ferini-Strambi, L.; Zucconi, M.; Stankov, B.;
Fraschini, F.; Smirne, S. NeuroReport 1994, 6, 132.
6. Anton-Tay, F.; Diaz, J. L.; Fernandez-Guardiola, A. Life
Sci. (part 1) 1971, 10, 841.
7. Maestroni, G. J. J. Pineal Res. 1993, 14, 1.
8. Morgan, P. J.; Barrett, P.; Howell, H. E.; Helliwell, R.
Neurochem. Int. 1994, 24, 101.
1
NHEt
—
Me
9
40
90
8
3g
4a
4b
4c
4d
4e
4f
60
4
Et
1
20
30
40
30
40
nPr
iPr
2
4
cPr
NHEt
2
9
binding affinity at both receptors. Replacement of the
conformationally constraining cyclopropane structural
element of compounds 3a–f by a more flexible alkyl side
chain provided compounds 4a–f, which demonstrated
higher affinity for both MT1 and MT2 receptor subtypes
than the previously reported corresponding compounds
2b.13 From this set of derivatives, only the acetamide 4a
demonstrated single digit nanomolar affinity for both
MT1 and MT2 receptor subtypes. However, all of the
other compounds, propionamide 4b, butyramide 4c, iso-
butyramide 4d, cyclopropylcarboxamide 4e, and urea 4f,
showed good affinity for the MT1 receptor but were
5–20-fold weaker MT2 ligands.
9. Reppert, S. M.; Weaver, D. R.; Godson, C. Trends
Pharmacol. Sci. 1996, 17, 100.
10. Nosjean, O.; Ferro, M.; Coge, F.; Beauverger, P.; Henlin,
J.-M.; Lefoulon, F.; Fauchere, J.-L.; Delagrange, P.;
Canet, E.; Boutin, J. A. J. Biol. Chem. 2000, 275, 31311.
11. Sun, L.-Q.; Chen, J.; Takaki, K.; Johnson, G.; Iben, L.;
Mahle, C. D.; Ryan, E.; Xu, C. Bioorg. Med. Chem. Lett.
2004, 14, 1197.
12. Sun, L.-Q.; Chen, J.; Bruce, M.; Deskus, J. A.; Epperson,
J. R.; Takaki, K.; Johnson, G.; Iben, L.; Mahle, C. D.;
Ryan, E.; Xu, C. Bioorg. Med. Chem. Lett. 2004, 14, 3799.
13. Sun, L.-Q.; Takaki, K.; Chen, J.; Iben, L.; Knipe, J. O.;
Pajor, L.; Mahle, C. D.; Ryan, E.; Xu, C. Bioorg. Med.
Chem. Lett. 2004, 14, 5157.
The two most active compounds to emerge from this
series, 3a and 3b, were chosen for further evaluation in
advanced profiling assays. It has been reported23 that
melatonin has a marked ability to enhance a-adrenocep-
tor-mediated vasoconstriction of the rat tail artery.
Thus, the effect of these compounds on vascular smooth
muscle was evaluated using the method already de-
scribed.24 Compared to melatonin, both 3a and 3b
showed significantly reduced vasoconstrictive activity
in assays conducted with rat caudal arteries (0.12 and
0.03 relative to melatonin, respectively).
14. Internal unpublished results.
15. Catt, J. D.; Johnson, G.; Keavy, D. J.; Mattson, R. J.;
Parker, M. F.; Takaki, K. S.; Yevich, J. P. U.S. Patent
5,856,529, 1999; Chem. Abstr. 1999, 130, 110151.
16. Pappo, R.; Allen, D. S., Jr.; Lemieux, R. U.; Johnson,
W. S. J. Org. Chem. 1956, 21, 478.
17. Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401.
18. Full crystallographic data have been deposited to the
Cambridge Crystallographic Data Center (CCDC refer-
ence number 258911). Copies of the data can be obtained
In conclusion, the benzofuran scaffold substituted with
the 4-phenylbutyl and alkylamide groups was success-
fully replaced by an isosteric dihydrobenzofuranyl moi-
ety. This structural replacement led to the discovery of a
19. Mitsunobu, O. Synthesis 1981, 1.
20. Vallgarda, J.; Hacksell, U. Tetrahedron Lett. 1991, 32,
5625.