674
F. Ulgheri et al. / Tetrahedron Letters 44 (2003) 671–675
Forrest, B.; Guenther, R.; Sierzputowska-Gracz, H.; 2,3-O-isopropylidene-
D
- or -L-glyceraldehyde (1.1 equiv.).
Nawrot, B.; Malkiewicz, A.; Agris, P. F. Nucleosides
Nucleotides 1996, 15, 1009–1028 and references cited
therein; (f) Temperilli, A.; Ruggieri, D.; Salvati, P. Eur. J.
Med. Chem. Chim. Ther. 1988, 23, 77–82; (g) Skaric, V.;
Matulic-Adamic, J. Helv. Chim. Acta 1983, 66, 687–693.
When Lewis acid assisted couplings were examined the Li
enolate was transferred via cannula to the solution con-
taining glyceraldehyde (1.1 equiv.) and Lewis acid (1.2
equiv.). After quenching the reaction mixture with
aqueous citric acid solution, the crude material was
purified by flash chromatography. The ratio of the four
diastereomers was determined on the crude product by
NMR.
6. (a) Dondoni, A.; Massi, A.; Sabbatini, S. Tetrahedron
Lett. 2001, 42, 4495–4497; (b) Sano, H.; Mio, S.; Kita-
gawa, J.; Sugai, S. Tetrahedron: Asymmetry 1994, 5,
2233–2240.
Compound 4: 1H NMR (300 MHz, CDCl3) l 1.23 (s,
3H), 1.27 (s, 3H), 2.55 (d, J=4.5, 1H), 2.95 (ddd, J=3.9,
6.3 and 11.2, 1H), 3.10 (dd, J=6.3 and 12.0, 1H), 3.52 (t,
J=12.0, 1H), 3.83–3.91 (m, 2H), 4.08 (td, J=3.0 and 7.8,
1H), 4.15-4.19 (m, 1H), 4.56 (d, J=15.0, 1H), 4.71 (d,
J=15.0, 1H), 5.01 (s, 2H), 7.22–7.31 (m, 10H). 13C NMR
(75.4 MHz, CDCl3) l 170.5, 153.0, 137.4, 136.0, 128.5,
128.1, 128.0, 127.8, 127.5, 127.0, 109.3, 74.6, 68.9, 67.1,
51.7, 44.1, 43.1, 40.4, 26.5, 24.8. Colorless oil, [h]2D0=+9
(c 1.7, CHCl3). Compound 5: 1H NMR (300 MHz,
CDCl3) l 1.28 (s, 3H), 1.29 (s, 3H), 2.95 (ddd, J=4.8, 9.3
and 9.3, 1H), 3.35 (d, J=9.3, 2H), 3.51–3.59 (m, 1H),
3.91 (dd, J=5.1 and 8.4, 1H), 4.01–4.17 (m, 3H), 4.65 (s,
2H), 5.51 (s, 2H), 7.22–7.41 (m, 10H). 13C NMR (75.4
MHz, CDCl3) l 171.7, 152.9, 137.2, 135.9, 128.8, 128.4,
128.1, 127.4, 109.6, 76.9, 72.4, 67.6, 51.7, 44.3, 44.0, 43.3,
26.6, 25.2. Colorless oil [h]2D0=−22 (c 1.3, CHCl3).
14. Nucleophilic addition of organometals to acetonide-pro-
tected glyceraldehyde generally exhibits anti diastereose-
lectivity rationalized by a Felkin–Anh or a Felkin–Anh
b-chelate transition state: (a) Jurczak, J.; Pikul, S.; Bauer,
T. Tetrahedron 1986, 42, 447–488; (b) Devant, R. M.;
Radunz, H.-E. Formation of CꢀC Bonds by Addition to
Carbonyl Groups; Houben-Weyl, Georg Thieme: Stutt-
gart/New York, 1995; E-21, pp. 1220–1235 and references
cited therein.
7. (a) Kondo, Y.; Witkop, B. J. Am. Chem. Soc. 1968, 90,
764–770; (b) Kunieda, T.; Witkop, B. J. Am. Chem. Soc.
1971, 93, 3478–3487; (c) Cerutti, P.; Kondo, Y.; Landis,
W. R.; Witkop, B. J. Am. Chem. Soc. 1968, 90, 771–775;
(d) Kautz, J.; Schnackerz, K. D. Eur. J. Biochem. 1989,
181, 431–435; (e) Jahnke, K.; Podschun, B.; Schnackerz,
K. D.; Kautz, J.; Cook, P. F. Biochemistry 1993, 32,
5160–5166; (f) Sander, E. G. J. Am. Chem. Soc. 1969, 91,
3629–3634.
8. (a) Dietrich, R. F.; Sakurai, T.; Kenyon, G. L. J. Org.
Chem. 1979, 44, 1894–1896; (b) Rachina, V.; Blagoeva, I.
Synthesis 1982, 967–968.
9. A lithiated DHU derivative has been used as an ‘amide
a-anion’ for the synthesis of 5-acyl-uridines nucleoside
analogues. Hiroyuki, H.; Hiromichi, T.; Tadashi, M.
Chem. Pharm. Bull. 1982, 30, 4589–4592. 5-C-Glycosyl
uracil derivatives have been synthesized as nucleoside
analogues via addition of 5-lithio uracil to aldehydo
sugars. (a) Lerch, U.; Burdon, M. G.; Moffatt, J. G. J.
Org. Chem. 1971, 36, 1507–1513; (b) Asbun, W.; Binkley,
S. B. J. Org. Chem. 1966, 31, 2215–2219.
10. For some examples of bioactive glycosyl ureido deriva-
tives, see: (a) Velazquez, S.; Chamorro, C.; Perez-Perez,
M.-J.; Alvarez, R.; Jimeno, M.-L.; Martin-Domenech,
A.; Perez, C.; Gago, F.; De Clercq, E.; Balzarini, J.;
San-Felix, A.; Camarasa, M.-J. J. Med. Chem. 1998, 41,
4636–4647; (b) Diaz Perez, V. M.; Ortiz Mellet, C.;
Fuentes, J.; Garcia Fernandez, J. M. Carbohydr. Res.
2000, 326, 161–175. For some examples of the use of
glycosyl ureido derivatives for the synthesis of bioactive
molecules see: (a) Garcia-Moreno, M. I.; Benito, J. M.;
Ortiz Mellet, C.; Garcia Fernandez, J. M. J. Org. Chem.
2001, 66, 7604–7614; (b) Piekarska-Bartoszewicz, B.;
Temeriusz, A. Carbohydr. Res. 1990, 203, 302–307; (c)
Avalos Gonzalez M.; Cintas Moreno, P.; Gomez Monter-
rey, I. M.; Jimenez Requejo, J. L.; Palacios Albarran, J.
C.; Rebolledo Vicente, F. Carbohydr. Res. 1990, 197,
310–317.
15. The formation of an ate complex or the transmetallation
of the lithium enolate to Sn(IV) enolate can be
considered.
16. Aldol reactions between a-chiral aldehydes and E(O)-
enolates preferentially give the Felkin-type adduct by
abiding both Felkin–Anh rule and the Zimmerman–
Traxler model: (a) Mengel, A.; Reiser, O. Chem. Rev.
1999, 99, 1191–1223; (b) Roush, W. R. J. Org. Chem.
1991, 56, 4151–4157; (c) Gennari, C.; Vieth, S.; Comotti,
A.; Vulpetti, A.; Goodman, J. M.; Paterson, I. Tetra-
hedron 1992, 48, 4439–4458.
17. Only 3% of epimerization was observed for the com-
pound 4 in the same reaction condition.
11. Compound 2: 1H NMR (300 MHz, CDCl3) l 4.08 (t,
J=6.6, 2H), 4.67 (t, J=6.6, 2H), 6.04 (s, 2H), 6.43 (s,
2H), 7.22–7.44 (m, 10H). 13C NMR (75.4 MHz, CDCl3)
l 168.9, 153.8, 137.8, 136.3, 128.8, 128.6, 128.3, 127.9,
127.8, 127.3, 51.6, 43.9, 41.8, 31.7. White solid, mp
81–83°C.
12. Yamaguchi, M. In Comprehensive Organic Synthesis;
Trost, B. M.; Fleming, I., Eds. Lewis Acid Promoted
Addition Reactions of Organometallic Compounds; Perg-
amon Press: Oxford/New York, 1991; Vol. 1, pp. 325–
352.
18. By changing the reaction conditions (EtOH/H2O ratio
and NaBH4 equiv.) we obtained a larger amount of the
compound 9 up to 35%. Whereas using LiBH4 (6 equiv.)
in THF we obtained only the product 9.
19. Compound 8: 1H NMR (300 MHz, CDCl3) l 0.28 (s,
3H), 0.32 (s, 3H), 0.81 (s, 9H), 1.31 (s, 3H), 1.39 (s, 3H),
1.94–1.99 (m, 1H), 3.14 (dd, J=3.3 and 15.0, 1H), 3.66–
3.82 (m, 6H), 3.96–4.06 (m, 2H), 4.21 (d, J=16.2, 1H)
4.33–4.15 (m, 2H), 4.80 (d, J=16.2, 1H), 6.19 (bs, 1H),
7.19–7.37 (m, 10H). 13C NMR (75.4 MHz, CDCl3) l
159.6, 140.0, 138.0, 128.6, 128.4, 127.5, 127.2, 126.8,
109.5, 76.1, 75.7, 67.6, 60.0, 50.0, 45.0, 44.0, 29.7, 26.4,
25.7, 25.3, 17.9, −3.9, −4.6. Colorless oil [h]2D0=−12 (c 0.8,
CHCl3). Compound 9: 1H NMR (300 MHz, CDCl3) l
0.02 (s, 3H), 0.10 (s, 3H), 0.86 (s, 9H), 1.31 (s, 3H), 1.39
13. Typical procedure: DBDHU lithium enolate obtained by
adding LDA (1.2 equiv.) to a solution of DBDHU 2 (1.0
equiv.) in anhydrous solvent at −78°C under argon, was
allowed to react at a same temperature for 4 h with