Full Papers
doi.org/10.1002/ejoc.202100073
[6] a) Q. Knijnenburg, A. D. Horton, H. v. d. Heijden, T. M. Kooistra, D. G. H.
temperature whereupon the H2 pressure was released. Subse-
quently, solvent (1 mL) was added to each reaction vials and the
thus-diluted reactions solutions were stirred on air for a period of
30 min in order to drive off excess hydrogen. Finally, an aliquot of
50 μL was taken from each vial, mixed with 0.5 mL of methanol
(0.5 mL), and analyzed by GC-MS.
Hetterscheid, J. M. M. Smits, B. de Bruin, P. H. M. Budzelaar, A. W. Gal, J.
[7] a) R. P. Yu, J. M. Darmon, C. Milsmann, G. W. Margulieux, S. C. E. Stieber,
[8] D. Srimani, A. Mukherjee, A. F. G. Goldberg, G. Leitus, Y. Diskin-Posner,
[9] P. Puylaert, A. Dell’Acqua, F. El Ouahabi, A. Spannenberg, T. Roisnel, L.
[10] T. J. Korstanje, J. Ivar van der Vlugt, C. J. Elsevier, B. de Bruin, Science
[11] a) S. Sandl, T. M. Maier, N. P. van Leest, S. Kröncke, U. Chakraborty, S.
Demeshko, K. Koszinowski, B. de Bruin, F. Meyer, M. Bodensteiner, C.
[12] a) M. R. Friedfeld, H. Y. Zhong, R. T. Ruck, M. Shevlin, P. J. Chirik, Science
H. Wang, C. Shi, G.-Q. Chen, X. Zhang, Nat. Commun. 2020, 11, 3239–
[14] D. Gärtner, A. Welther, B. R. Rad, R. Wolf, A. Jacobi von Wangelin, Angew.
Chem. Int. Ed. 2014, 53, 3722–3726; Angew. Chem. 2014, 126, 3796–
3800.
Standard Procedure for the Isolation of the Hydrogenation
Products. The ethanolic reaction solution as obtained from the
catalytic hydrogenation experiment was transferred into a 50 mL
round-bottom flask whereupon the solvent was removed in vacuo.
The residuals were taken up in dichloromethane and an excess of
2 M HCl solution in diethyl ether was added to initiate prompt
formation of a precipitate. The suspension was then filtered and
the collected solid was washed with dichloromethane until the
draining filtrate appeared colorless. Eventually, the thus-obtained
hydrochloride salt was dried in a desiccator over silica gel.
Alternative Procedure for the Isolation of the Salts 4c, 4p, 4s,
and 4y. Since these products proved to be partially or completely
soluble in dichloromethane, a different isolation method was
elaborated. First, the ethanolic reaction solution from the hydro-
genation experiment was evaporated to dryness and after that, 3 M
aqueous HCl solution (2 mL) was added. The thus-obtained
suspension was filtrated and the clear aqueous filtrate was then
evaporated to dryness leaving behind the hydrochloride salt.
[15] Y.-N. Duan, X. Du, Z. Cui, Z. Zeng, Y. Liu, T. Yang, J. Wen, X. Zhang, J.
Am. Chem. Soc. 2019, 141, 20424–20433.
[16] X. Li, H. Lei, J. Liu, X. Zhao, S. Ding, Z. Zhang, X. Tao, W. Zhang, W.
Acknowledgments
Financial support was provided by the Austrian Science Fund
(FWF), Standalone Project P 32045 ‘Metallocorrole-Based Catalysts
for Biomass Valorization’. Furthermore, we gratefully thank Univ.-
Prof. Dr. Marko Hapke from the INCA at JKU for pleasant and
fruitful discussions and the generous support. Moreover, we are
much obliged to DI Thomas Bögl from the department of
Analytical Chemistry at the JKU for performing the HR-MS
measurements of the cobalt corrole catalyst and the various
hydrogenation products.
[17] a) K. M. Kadish, L. F. Frémond, Z. Ou, J. Shao, C. Shi, F. C. Anson, F.
5625–5631; b) W. Schöfberger, F. Faschinger, S. Chattopadhyay, S.
Bhakta, B. Mondal, A. A. W. J. Elemans, S. Müllegger, S. Tebi, R. Koch, F.
Klappenberger, M. Paszkiewicz, J. V. Barth, E. Rauls, H. Aldahhak, W. G.
Schmidt, A. Dey, Angew. Chem. Int. Ed. 2016, 55, 2350–2355; Angew.
Chem. 2016, 128, 2396–2401; c) H. C. Honig, C. B. Krishnamurthy, I.
[18] R. De, S. Gonglach, S. Paul, M. Haas, S. S. Sreejith, P. Gerschel, U.-P. Apfel,
[19] S. Gonglach, S. Paul, M. Haas, F. Pillwein, S. S. Sreejith, S. Barman, R. De,
S. Müllegger, P. Gerschel, U.-P. Apfel, H. Coskun, A. Aljabour, P. Stadler,
W. Schöfberger, S. Roy, Nat. Commun. 2019, 10, 3864.
Conflict of Interest
[20] J.-M. Barbe, G. Canard, S. Brandés, F. Jérôme, G. Dubois, R. Guilard,
The authors declare no conflict of interest.
Yang, M. Meyerhoff, Electroanalysis 2013, 25 (12), 2579–2585.
[22] a) D. Formenti, F. Ferretti, F. Scharnagl, M. Beller, Chem. Rev. 2018, 119,
Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J. Rabeah, H.
1076; d) P. Zhou, L. Jiang, F. Wang, K. Deng, K. Lv, Z. Zhang, Sci. Adv.
Keywords: Catalysis · Cobalt · Corroles · Hydrogenation ·
Nitroarenes
[1] S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W. Baumann,
[2] a) S. Elangovan, J. Neumann, J.-P. Sortais, K. Junge, C. Darcel, M. Beller,
Nat. Commun. 2016, 7, 12641; b) K. Azouzi, A. Bruneau-Voisine, L.
[4] M. Hapke, G. Hilt, (Eds.) Cobalt Catalysis in Organic Synthesis: Methods
and Reactions, Wiley-VCH: Weinheim, 2020.
Obenauf, R. Kempe, J. Am. Chem. Soc. 2015, 137, 7998–8001; c) J.
3740; d) J. Schneekönig, B. Tanner, H. Hornke, M. Beller, K. Junge, Catal.
Sci. Technol. 2019, 9, 1779–1783.
[25] a) W. Osterloh, V. Quesneau, N. Desbois, S. Brandès, W. Shan, V.
Blondeau-Patissier, R. Paolesse, C. Gros, K. Kadish, Inorg. Chem. 2019, 59,
595–611; b) V. Quesneau, W. Shan, N. Desbois, S. Brandès, Y. Rousselin,
M. Vanotti, V. Blondeau-Patissier, M. Naitana, P. Fleurat-Lessard, E.
van Caemelbecke, K. Kadish, C. Gros, Eur. J. Inorg. Chem. 2018, 38, 4265–
4277; c) W. Osterloh, N. Desbois, V. Quesneau, S. Brandès, P. Fleurat-
Lessard, Y. Fang, V. Blondeau-Patissier, R. Paolesse, C. Gros, K. Kadish,
Quesneau, S. Brandès, E. Caemelbecke, W. Osterloh, V. Blondeau-
[26] P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301–312.
Eur. J. Org. Chem. 2021, 2114–2120
2119
© 2021 The Authors. European Journal of Organic Chemistry published
by Wiley-VCH GmbH