5684
D. R. Compton et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5681–5684
Table 1. ERa and ERb relative binding affinitiesa
ands. In contrast to our initial design expectations, how-
ever, we found that introducing a 6-hydroxyl into the
core resulted in reduced binding affinity, which sug-
gested that the ligand core is binding to the ER in a re-
versed fashion, with a pendant phenol, rather than the
hydroxyl pyrimidine group, serving as the mimic of
the A-ring of estradiol. Further work based on the
new lead compound, 12c, has led to ER ligands with
higher binding affinity.17
Compound
ERa
ERb
11a
12a
12b
12c
13a
14a
14b
14c
—
—
0.010
0.007
0.004
—
0.050
0.023
0.100
0.005
0.010
0.006
0.034
0.003
—
0.004
a Relative binding affinities (RBA) reported as a percent of E2 activity
where E2 = 100%. These values are the average of replicate experi-
ments, where the range has a CV below 0.3. Where values are not
given, they are below detection, <0.003. The Kd of estradiol is 0.2nM
(ERa) and 0.5nM (ERb).
Acknowledgements
We are grateful for support of this research through a
grant from the National Institutes of Health [PHS
5R37 DK15556].
measurable RBA values are selective for ERb. Com-
pound 12c, which had the highest ERb binding, also
showed the greatest selectivity (25-fold). Compound
14c, of the original design, did show good ERb selectiv-
ity, but had only a third the binding affinity of 12c.
References and notes
1. Katzenellenbogen, B. S.; Katzenellenbogen, J. A. Breast
Cancer Res. 2000, 2, 335–344.
2. Meegan, M. J.; Lloyd, D. G. Curr. Med. Chem. 2003, 10,
181–210.
Based on the consistently higher affinity of the pyraz-
olo[1,5-a]pyrimidine systems lacking the 6-hydroxyl
group, we believe it unlikely that this heterocyclic system
binds with the 6-hydroxyl group mimicking the A-ring
phenol of estradiol. Thus, in work to be described else-
where, we used the highest affinity analog lacking the 6-
hydroxyl group (12c) as a lead to explore how effectively
systems that use the pendant 4-hydroxyphenyl groups as
the A-ring mimic of estradiol can be developed to bind
to the ERs.17 In exploring these other analogs, we chose
those that include alkyl groups at the 5- and 7-positions
(Fig. 3). These alkyl groups could readily be incorpo-
rated into our synthetic scheme as substituents on the
1,3-dicarbonyl unit used to complete the formation of
the pyrimidine unit, and they add hydrophobic bulk to
fill space within the ligand-binding pocket. As described
elsewhere, some of these redesigned pyrazolo[1,5-
a]pyrimidine systems show significantly improved ER
binding affinities, results which can be rationalized by
molecular modeling which places the C-2 (4-hydroxy-
phenyl) group in the A-ring binding pocket. The new
ER analogs also display interesting patterns of selectiv-
ity for ERa versus ERb in terms of binding affinity and
transcription potency and efficacy.17
3. Grese, T. A.; Pennington, L. D.; Sluka, J. P.; Adrian, M.
D.; Cole, H. W.; Fuson, T. R.; Magee, D. E.; Phillips, D.
L.; Rowley, E. R.; Shetler, P. K.; Short, L. L.; Venugo-
palan, M.; Yang, N. N.; Sato, M.; Glasebrook, A. L.;
Bryant, H. U. J. Med. Chem. 1998, 41, 1272–1283.
4. von Angerer, E.; Knebel, N.; Kager, M.; Ganss, B. J.
Med. Chem. 1990, 33, 2635–2640.
5. Fink, B. E.; Mortensen, D. S.; Stauffer, S. R.; Aron, Z. D.;
Katzenellenbogen, J. A. Chem. Biol. 1999, 6, 205–
219.
6. Stauffer, S. R.; Coletta, C. J.; Tedesco, R.; Nishiguchi, G.;
Carlson, K.; Sun, J.; Katzenellenbogen, B. S.; Katzenel-
lenbogen, J. A. J. Med. Chem. 2000, 43, 4934–4947.
7. Mortensen, D. S.; Rodriguez, A. L.; Carlson, K. E.; Sun,
J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J.
Med. Chem. 2001, 44, 3838–3848.
8. Gilligan, P. J.; Baldauf, C.; Cocuzza, A.; Chidester, D.;
Zaczek, R.; Fitzgerald, L. W.; McElroy, J.; Smith, M. A.;
Shen, H. S. L.; Saye, J. A.; Christ, D.; Trainor, G.;
Robertson, D. W.; Hartig, P. Bioorg. Med. Chem. 2000, 8,
181–189.
9. Almansa, C.; de Arriba, A. F.; Cavalcanti, F. L.; Gomez,
L. A.; Miralles, A.; Merlos, M.; Garcia-Rafanell, J.; Forn,
J. J. Med. Chem. 2001, 44, 350–361.
10. Pike, A. C. W.; Brzozowski, A. M.; Hubbard, R. E.;
Bonn, T.; Thorsell, A.-G.; Engstrom, O.; Ljunggren, J.;
Gustafsson, J.-A.; Carlquist, M. EMBO J. 1999, 18, 4608–
4618.
11. Elnagdi, M. H.; Erian, A. W. Bull. Chem. Soc. Jpn. 1990,
63, 1854–1856.
12. Novinson, T.; Miller, J. P.; Scholten, M.; Robins, R. K.;
Simon, L. N.; OꢀBrien, D. E.; Meyer, R. B., Jr. J. Med.
Chem. 1975, 18, 460–464.
In summary, we have explored a new heterocyclic sys-
tem, pyrazolo[1,5-a]pyrimidine, as a core scaffold for
developing novel ER ligands. This synthetically versatile
bicyclic system allows for the introduction of multiple
substituent variations in our search for good ER lig-
13. Kayaleh, N. E.; Gupta, R. C.; Johnson, F. J. Org. Chem.
2000, 65, 4515–4522.
14. Balsevich, J. Can. J. Chem. 1983, 61, 1053–1059.
15. Baganz, H.; May, H. J. Chem. Ber. 1966, 99, 3771–3777.
16. Carlson, K. E.; Choi, I.; Gee, A.; Katzenellenbogen, B. S.;
Katzenellenbogen, J. A. Biochemistry 1997, 36, 14897–
14905.
17. Compton, D. R.; Sheng, S.; Carlson, K. E.; Rebacz, N. A.;
Katzenellenbogen, J. A.; Katzenellenbogen, B. S. J. Med.
Chem., in press.
Figure 3. Redesigned pyrazolo[1,5-a]pyrimidine systems based on lead
compound 12c.